Do-it-yourself biology: Learning to build a better microbe

Jan 13, 2009

(PhysOrg.com) -- Building a cell from scratch is a lot more complicated than building a computer. But that's just what synthetic biologists, including many at MIT, are trying to figure out how to do.

Using engineering principles, researchers and students in MIT's Department of Biological Engineering are building a set of "off-the shelf parts" for cells, cataloging and assembling bacterial DNA sequences to produce microbes tailored for a specific task. Such bacteria could have numerous applications in medicine, energy and environmental cleanup.

MIT biological engineering instructor Natalie Kuldell and recent PhD recipient Reshma Shetty will discuss the possibilities of and obstacles facing synthetic biology at a Soapbox talk, "Do-It-Yourself Biology," at 6 p.m. Wednesday at the MIT Museum.

"If you could really program a cell to do your bidding, you could have it spit out drugs really quickly, or spit out biofuels," Kuldell said. "It would be wonderful to replace refineries with small microbial factories."

Before that can happen, biologists and biological engineers need to figure out whether engineering approaches can be practically transferred to the life sciences, which tend to be much more unpredictable, Kuldell said.

Such efforts have been underway at MIT for several years, launched by engineers Randy Rettberg and Tom Knight. An IAP course in synthetic biology they started in 2003 with Drew Endy, now at Stanford University, has grown into the iGEM (international Genetically Engineered Machine) competition, which now attracts more than 1,000 students from around the world. Each team of eight to 12 students develops its own custom-built bacteria and presents the results at MIT in November.

iGEM is built around the Registry of Standard Biological Parts, a catalog of all the "parts" (DNA sequences) that participants have developed. Students design bacteria for specific functions by assembling various parts, including protein-coding sequences (genes), promoters, ribosome-binding sites, etc.

Past prize-winning projects have included an arsenic detector for drinking water, artificial blood ("Bactoblood"), and bacteria that can digest lactose in the intestines of lactose-intolerant people.

Though some iGEM projects turn out to be impractical or would meet considerable regulatory hurdles, Rettberg is encouraged by the early successes he's seen so far.

"Many fields have huge amounts of potential but never get going. This is one where we already have 1,000 people working on it and they are making new and interesting things, and a fair amount of it is working," said Rettberg, a principal research engineer in the Department of Biological Engineering.

Kuldell also teaches several classes in synthetic biology, including one for freshmen (Course 20.020) in which students design solutions to problems they identify on their own. She tells her students they are pioneers in an emerging field, and they are eager to tackle the challenge, she said.

"Electrical engineering students should be able to program a computer and build some of the hardware, so it makes sense that biological engineering students should be able to genetically program and build a cell," Kuldell said.

Provided by MIT

Explore further: Lemurs match scent of a friend to sound of her voice

add to favorites email to friend print save as pdf

Related Stories

Bacterial 'FM radio' developed

Apr 09, 2014

Programming living cells offers the prospect of harnessing sophisticated biological machinery for transformative applications in energy, agriculture, water remediation and medicine. Inspired by engineering, researchers in ...

Synthetic gene circuits pump up cell signals

Apr 08, 2014

(Phys.org) —Synthetic genetic circuitry created by researchers at Rice University is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated ...

Green engineering for waste management

Apr 01, 2014

"Green engineering" is based on the idea of designing, selling and using processes and products that are technically and economically viable while, at the same time, minimizing pollution, as well as health ...

Recommended for you

Lemurs match scent of a friend to sound of her voice

10 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

Chrono, the last piece of the circadian clock puzzle?

12 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.