Martian rock arrangement not alien handiwork

Jan 07, 2009

At first, figuring out how pebble-sized rocks organize themselves in evenly-spaced patterns in sand seemed simple and even intuitive. But once Andrew Leier, an assistant geoscience professor at the U of C, started observing, he discovered that the most commonly held notions did not apply.

And even more surprising, was that his findings revealed answers to NASA's questions about sediment transport and surface processes on Mars. Those results are published in this month's edition of Geology.

Leier first studied loose pebbles and rocks, also known as clasts, when he was looking at sand dunes in Wyoming and noticed that the clasts seemed to spread away from each other in an almost organized fashion. It turns out, NASA was examining similar patterns on the sandy surface of Mars.

NASA proposed that wind was moving these rocks around. But Leier, who co-authored the study with Jon Pelletier at the University of Arizona and James Steidtmann at the University of Wyoming, says that would be impossible. They also discovered that rather than being pushed backward by the breeze, clasts actually tend to move into the direction of prevailing winds.

"The wind is less effective at moving clasts on Mars because the atmosphere is less dense," says Leier. "And for the wind to move the rocks downwind, it would have to be moving on the order of 8,000 kilometres an hour."

Instead, the loose sand around clasts is removed by the wind, causing scour-pits to form in front of larger clasts. Eventually, the rocks fall forward (or laterally) into the scours and then, the process repeats. Behind the larger grains, the sand is protected from the wind erosion and so a "sand-shadow" develops. This shadow prevents the clasts from being pushed downwind and from bunching up with one another.

Leier and his team first came up with these results through observation but then took them to a wind tunnel at the University of Wyoming to test the theory. Here, a tightly grouped bunch of small pebbles were buried in sand and then the wind tunnel was activated and results photographed. Surprisingly, as the sand was eroded by the wind, the larger clasts moved into the wind and spread out from one another.

Numerical models, based on the physics of wind transport, were run to test these ideas. Just like what was observed in the wind tunnel, the numerical models predict that as the sand is blown away, the large pebbles will spread out from one another, and often move into the direction of the wind, regardless of their initial configuration.

So through a few simple feedbacks, the larger grains on a windy, sandy surface will inherently spread out and organize (or dis-organize) themselves.

"What I find most interesting about this is that something as seemingly mundane as the distribution of rocks on a sandy, wind-blown surface can actually be used to tell us a lot about how wind-related processes operate on a place as familiar as the Earth and as alien as Mars," says Leier. "It's chaotic and simple at the same time."

Paper: Leier's article Wind-driven reorganization of coarse clasts on the surface of Mars is published in the January 2009 edition of Geology.

Source: University of Calgary

Explore further: The source of the sky's X-ray glow

add to favorites email to friend print save as pdf

Related Stories

Winds drive dune movement on Mars

Nov 16, 2011

Sand dunes, a common feature on the surface of Mars, can provide a record of recent and past changes. Some dunes near Mars’ polar areas have been observed to move recently due to carbon dioxide ice sublimation, ...

A 'hands-on' approach to computers

Apr 06, 2009

(PhysOrg.com) -- At a time when ever more aspects of our lives are moving toward the virtual, online world -- stores, newspapers, games and even social interactions -- Hiroshi Ishii seems to be swimming against ...

Recommended for you

The source of the sky's X-ray glow

12 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

End dawns for Europe's space cargo delivery role

21 hours ago

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

Giant crater in Russia's far north sparks mystery

Jul 26, 2014

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

Jul 26, 2014

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

Jul 25, 2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

Jul 25, 2014

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

morpheus2012
1 / 5 (1) Jan 08, 2009
yeah right
that comning from the bigest gas giant in the solar system aka nasa

never a straight answer
nothing but lies
http://uk.youtube...fMATbqVc&feature=related
deatopmg
not rated yet Jan 08, 2009
@morpheus2012

NASA may be mostly a bunch of gas bags, as you imply, but generally not at Leier's level. This is a very nice piece of work.

However, Leier's work does not explain the mechanism that results in larger rocks sitting in a moat of sand (vapor [H2O?] discharge under the rocks?) and many more anomalies that are better explained by flowing liquid water in the present.