Scientist: Microbe Community Deep Beneath Arctic Permafrost Needs Study

Dec 18, 2008

(PhysOrg.com) -- A community of microbes, living in a frigid layer of gas hydrates deep beneath the Arctic permafrost, has piqued the interest of scientists who say a better understanding of that environment is important because it is both a potential fuel source and record of climate change.

Frederick “Rick” Colwell, a microbiologist from Oregon State University, shared the results of his research at the annual meeting of the American Geophysical Union, outlining how these microbes may have been around for as long as 35 million years, when ancient beach sands were deposited along what is now the North Slope of Alaska.

“These microbes co-exist with methane hydrates more than 600 meters beneath the North Slope, just below the permafrost layer,” Colwell said. “It’s an interesting location for life to exist. We don’t understand all the characteristics for life and we need to know more about this novel environment.”

A professor in Oregon State’s College of Oceanic and Atmospheric Sciences, Colwell was part of a team that explored a core sample taken during a “production test” of the region’s fuel potential. The research, funded by BP and the Department of Energy, sought to learn more about whether this rich methane field could be used as a fuel source.

During that exploration, a science team was able to extract a 154-meter core sample from more than 600 meters below the surface. There the porous ancient beach sands have been filled with gas and water deposits, forming a methane hydrate field that the scientists believe is about 1.5 million years old – the same age as the permafrost covering it.

“One of the scientific curiosities we’d like to explore is what controls the distribution and diversity of the microbes in the methane hydrates,” Colwell said. “Some microbes consume methane as an energy source and others produce methane. It’s important to learn more about this environment where an unconventional fuel source exists.”

Colwell was part of a scientific panel that produced a report for the Council of Canadian Academies in July of 2008 called “Energy From Gas Hydrates: Assessing the Opportunities and Challenges for Canada.” In that report, the authors say the state of knowledge about the “producibility” of gas hydrates is similar to the understanding that scientists and engineers had about coal-bed and oil sand methane extraction three decades ago. In both cases, it took these fuel sources several decades to become commercially viable.

The gas hydrates, which are comprised predominantly of methane, are formed from the heating of organic material deep beneath the surface. The gases rise and mix with water, creating the hydrates, which are found both in the Arctic permafrost and beneath it.

How much methane there is, the extent to which it is a hydrocarbon resource and the properties of this complex geologic environment are puzzles worth exploring, Colwell said.

“We don’t know much about these hydrates, particularly those beneath the permafrost layer,” Colwell said. “We need to characterize the chemical, physical and biological nature of all levels of the permafrost and below so we understand how the entire system works in this sensitive environment.”

Provided by OSU College of Oceanic and Atmospheric Sciences

Explore further: Aging Africa

add to favorites email to friend print save as pdf

Related Stories

Danish museum discovers unique gift from Charles Darwin

1 hour ago

The Natural History Museum of Denmark recently discovered a unique gift from one of the greatest-ever scientists. In 1854, Charles Darwin – father of the theory of evolution – sent a gift to his Danish ...

Watching others play video games is the new spectator sport

2 hours ago

As the UK's largest gaming festival, Insomnia, wrapped up its latest event on August 25, I watched a short piece of BBC Breakfast news reporting from the festival. The reporter and some of the interviewees appeared baff ...

Recommended for you

Aging Africa

Aug 29, 2014

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

NASA animation shows Hurricane Marie winding down

Aug 29, 2014

NOAA's GOES-West satellite keeps a continuous eye on the Eastern Pacific and has been covering Hurricane Marie since birth. NASA's GOES Project uses NOAA data and creates animations and did so to show the end of Hurricane ...

EU project sails off to study Arctic sea ice

Aug 29, 2014

A one-of-a-kind scientific expedition is currently heading to the Arctic, aboard the South Korean icebreaker Araon. This joint initiative of the US and Korea will measure atmospheric, sea ice and ocean properties with technology ...

User comments : 0