Next step to the quantum computer

Oct 06, 2004

Physicists at the University of Bonn build quantum data memory

Physicists from the University of Bonn have succeeded in taking a decisive step forward towards processing quantum information with neutral atoms: in the latest issue of the 'Physical Review Letters' vol. 93 (2004) they describe how they managed to set up a quantum register experimentally. Their next aim is to construct a quantum gate in which two or more atoms interact with each other in a controlled way. By combining the register and gate there would then be all the basic components available for developing a quantum computer with neutral atoms.

Registers are the central memory of a computer. They consist of a series of elementary information cells which can each take one bit of information, i.e. a logical zero or one. In a register of eight bits' length, for example, a number between 0 and 255 can be stored – the 255 corresponds to a series of eight bits with the state of 1. In order to add two numbers three registers are normally required: two for the two addends and one more for the result.

'For our registers we use neutral atoms,' Dominik Schrader of the Bonn Institute of Applied Physics adds. An atom is a microscopic quantum system and can therefore store quantum information. In analogy with the 'bit' this is thus known as a 'qubit'. In addition to the classic information states of zero and one, qubits can also take up an arbitrary number of intermediate states, what are known as quantum mechanical superposition states.

Dominik Schrader has built the register together with Dr. Arno Rauschenbeutel in Professor Dieter Meschede's team. In their experiment the physicists first decelerated caesium atoms so that they were scarcely moving. Five of these 'cool' atoms were then loaded onto a laser beam, a stationary light wave consisting of many peaks and troughs – roughly comparable to a piece of corrugated cardboard. The atoms were 'trapped' inside the troughs and remained stationary, which the team was able to check with a highly sensitive digital camera.

With the aid of an additional laser the researchers then initialised the quantum register, i.e. they 'wrote' zeros on all the qubits. 'We were then able to store the quantum information desired in each qubit by using microwave radiation,' Dominik Schrader explains. So as to be able to manipulate the qubits individually and selectively, the physicists generated a localised magnetic field. 'Depending on the local strength of the magnetic field, the qubits only react to microwave radiation of a very specific frequency. By varying the microwave radiation we were thus able to write the qubits desired.' The resolution of this addressing technique is about two thousandths of a millimetre – over a length of one millimetre, therefore, several hundred qubits could be stored.

In order to check whether the register really had stored the information desired, the researchers bombarded the chain of atoms with laser light which only interacts with qubits in status 0. The laser photons shot these 0 atoms off the carrier beam, but left the 1 atoms unaffected. On the camera image only the atoms with a state of 1 were subsequently visible.

In their next step the physicists will now attempt to set up a quantum gate, in which two or more qubits of the register interact with each other in a controlled way. 'We hope to get there in two years,' Dominik Schrader says. 'Mind you, in a field like this you repeatedly come across difficulties which you would not previously have anticipated.' He is thus cagey in making a prediction about when a 'quantum computer' worthy of the name will begin to operate. However, it would probably have abilities which would make traditional computers look pretty puny – e.g. when factorising large numbers, where today's computers soon come up against their limitations.

Source: University of Bonn

Explore further: Relaxing DNA strands by using nano-channels

add to favorites email to friend print save as pdf

Related Stories

Molecular engineers record an electron's quantum behavior

14 hours ago

A team of researchers led by the University of Chicago has developed a technique to record the quantum mechanical behavior of an individual electron contained within a nanoscale defect in diamond. Their technique ...

Quantum engineering

Aug 13, 2014

It can be difficult to distinguish between basic and applied research in the nascent field of quantum engineering. One person's exploration of quantum systems like atoms and electrons yields another's building ...

Recommended for you

Relaxing DNA strands by using nano-channels

12 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0