Portable Precision: A New Type of Atomic Clock

Dec 10, 2008

(PhysOrg.com) -- The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement of cesium atoms. Unfortunately, fountain clocks aren’t easily transportable- they tend to be huge, stationary apparatuses stuck in laboratories.

Physicists from the University of New South Wales, Australia and the University of Nevada, Reno propose a method to reduce the size of atomic clocks to handy, compact devices using specially engineered optical lattices.

Optical lattices are created by trapping atoms in a standing wave light field formed by laser beams. But the lasers can hamper the time keeping ability of the atoms. By applying an external magnetic field to the lattice in a specific direction, the atomic clock is rendered insensitive to the laser field strength. This property allows the atomic clock to function properly at a smaller size.

While a portable cesium clock could benefit numerous scientific and general applications, the expected accuracy of the optical lattice clocks has yet to be explored. Calling for further theoretical and experimental investigation, the authors assert that even if the precision of such clocks turns out to be less competitive than the fountains, the optical lattice clocks have a clear advantage of a smaller apparatus size, making them useful in applications like navigation systems and precision tests of fundamental symmetries in space.

Article: V.V. Flambaum, V.A. Dzuba, and A. Derevianko, Physical Review Letters (forthcoming)

Provided by APS

Explore further: Researchers find first direct evidence of 'spin symmetry' in atoms

add to favorites email to friend print save as pdf

Related Stories

Solar fuels as generated by nature

13 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

Timely arrival of Pharao space clock

Jul 28, 2014

ESA has welcomed the arrival of Pharao, an important part of ESA's atomic clock experiment that will be attached to the International Space Station in 2016.

Recommended for you

What is Nothing?

9 hours ago

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

11 hours ago

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

Aug 21, 2014

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

theophys
5 / 5 (1) Dec 10, 2008
Great, pretty soon we'll have digital watches that can tell us how many picoseconds we have to get where we are going. We'll still be late, but we'll know exactly how late we are.
schultz911
not rated yet Dec 11, 2008
Well, all in the name of scientific progress and commercialism. But you cant deny its importance in certain fields, knowing time periods to that precision could considerably affect certain calculations.
theophys
not rated yet Dec 11, 2008
Well, all in the name of scientific progress and commercialism. But you cant deny its importance in certain fields, knowing time periods to that precision could considerably affect certain calculations.


Of course.
MrP
not rated yet Dec 13, 2008
A comment to the author: cesium Atomic clocks are already portable http://tycho.usno...ium.html . Cesium fountain atomic clocks on the other hand, are not.