Controlling the building blocks of life

Dec 10, 2008
Controlling the building blocks of life

(PhysOrg.com) -- A simple and reliable method for converting one of the simplest chemical entities into one of the most difficult-to-make molecular building blocks of life, with complete control over its shape, is reported by scientists at the University of Bristol in this week's Nature [11 December].

It will have major implications for the synthesis of drugs and agrochemicals.

Many important molecules required for life exist in two forms that are mirror images of each other – like our left and right hands. This property is called ‘chirality’, from the Greek word for hand, and the two forms are called ‘enantiomers’, from the Greek word for opposite.

The classic example of the drug thalidomide illustrates the difference in biological response to chiral molecules: one of the two enantiomers caused devastating birth defects, whereas its mirror image had the desired sedative properties that doctors’ prescribed it for.

Since this catastrophe, and the subsequent recognition of the importance of the relationship between a small molecule (for example a drug) and its site of action (for example a protein), it has become necessary to test individual enantiomers and not mixtures of the two forms. But a mixture of enantiomers can be very difficult to separate.

Professor Varindar Aggarwal at the University of Bristol has now developed a simple and reliable method for converting one of the simplest chemical entities into one of the most difficult-to-make molecular building blocks of life, with complete control over its shape.

Professor Aggarwal explained the importance of this work: “We live in a chiral world. Indeed, chirality and life are so inextricably linked that the detection of chirality outside our planet is used as a test for extraterrestrial life.

“It is the shape and function of a molecule that gives rise to its properties. For example, the different smell of oranges and lemons comes from two molecules, identical except for their three-dimensional spatial arrangement. Thus being able to control the shape and function of enantiomers is critical to the many applications of organic chemical synthesis.”

This work is likely to find broad application in the synthesis of complex organic molecules, particularly in pharmaceuticals and agrochemicals where such difficult shapes are often encountered.

Aggarwal and colleagues have developed a two-step process that can be used to convert readily available secondary alcohols into single mirror image forms of tertiary alcohols that contain a quaternary stereogenic centre (a carbon atom with four different non-hydrogen substituents). Either mirror image of the tertiary alcohol can be made with very high levels of control over its shape.

Provided by University of Bristol

Explore further: Team pioneers strategy for creating new materials

add to favorites email to friend print save as pdf

Related Stories

Watching molecules 'dance' in real time

Aug 13, 2014

(Phys.org) —A new technique which traps light at the nanoscale to enable real-time monitoring of individual molecules bending and flexing may aid in our understanding of how changes within a cell can lead ...

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 0