Surface-level ozone pollution set to reduce tree growth 10 percent by 2100

Dec 09, 2008

Modern day concentrations of ground level ozone pollution are decreasing the growth of trees in the northern and temperate mid-latitudes, as shown in a paper publishing today in Global Change Biology. Tree growth, measured in biomass, is already 7% less than the late 1800s, and this is set to increase to a 17% reduction by the end of the century.

Ozone pollution is four times greater now than prior to the Industrial Revolution in the mid-1700s; if modern dependence on fossil fuels continues at the current pace, future ozone concentrations will be at least double current levels by the end of this century with the capacity to further decrease the growth of trees.

The study is the first statistical summary of individual experimental measurements of how ozone will damage the productivity of trees, including data from 263 peer-reviewed scientific publications.

Ozone is the third strongest greenhouse gas, directly contributing to global warming, and is the air pollutant considered to be the most damaging to plants. But more importantly, it has the potential to leave more carbon dioxide, ranked as the first strongest greenhouse gas, in the atmosphere by decreasing carbon assimilation in trees. Ozone pollution occurs when nitrogen oxides have a photochemical reaction with volatile organic compounds.

"This research quantifies the mean response of trees to ozone pollution measured in terms of total tree biomass, and all component parts such as leaf, root and shoot, lost due to ozone pollution," said Dr. Victoria Wittig, lead author of the study. "Looking at how ozone pollution affects trees is important because of the indirect impact on carbon dioxide concentrations in the atmosphere which will further enhance global warming, in addition to ozone's already potent direct impact."

In addition to ozone pollution reducing the strength of trees to hold carbon in the northern temperate mid-latitudes by reducing tree growth, the research also indicates that broad-leaf trees, such as poplars, are more sensitive to ozone pollution than conifers, such as pines, and that root growth is suppressed more than aboveground growth.

"Beyond the consequences for global warming, the study also infers that in mixed forests conifers will be favored over broad-leaved trees, and that the decrease in root size will increase the vulnerability to storms," said Wittig.

Source: Wiley

Explore further: Predicting bioavailable cadmium levels in soils

add to favorites email to friend print save as pdf

Related Stories

Calculate your nitrogen footprint

May 15, 2013

Carbon footprints are a familiar way to assess how green your lifestyle is, but now you can also measure your nitrogen footprint using a new tool, the N-Calculator.

Recommended for you

Predicting bioavailable cadmium levels in soils

15 hours ago

New Zealand's pastoral landscapes are some of the loveliest in the world, but they also contain a hidden threat. Many of the country's pasture soils have become enriched in cadmium. Grasses take up this toxic heavy metal, ...

Oil drilling possible 'trigger' for deadly Italy quakes

19 hours ago

Italy's Emilia-Romagna region on Tuesday suspended new drilling as it published a report that warned that hydrocarbon exploitation may have acted as a "trigger" in twin earthquakes that killed 26 people in ...

Snow is largely a no-show for Iditarod Trail Sled Dog Race

19 hours ago

On March 1, 65 mushers and their teams of dogs left Anchorage, Alaska, on a quest to win the Iditarod—a race covering 1,000 miles of mountain ranges, frozen rivers, dense forest, tundra and coastline. According ...

UN weather agency warns of 'El Nino' this year

19 hours ago

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Study shows less snowpack will harm ecosystem

20 hours ago

(Phys.org) —A new study by CAS Professor of Biology Pamela Templer shows that milder winters can have a negative impact both on trees and on the water quality of nearby aquatic ecosystems, far into the warm growing season.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Velanarris
3.4 / 5 (5) Dec 09, 2008
Wouldn't land usage and logging practices be at greater fault in this circumstance seeing as the trees are measured in total biomass and not average dimension?
GrayMouser
3 / 5 (4) Dec 09, 2008
More harum-scarum...

Add anything you want to the list of greenhouse gases, then make a crystal ball prediction that concentrations will increase (you have a 50-50 chance of being right), and then demand preventive measures.
MikeB
5 / 5 (1) Dec 16, 2008
This is a very tough problem... oh wait maybe we should just plant 15 or 20% more seedlings?
Nahhhhh.... better to whine and moan and get another big government grant.
MikeB
not rated yet Dec 17, 2008
I was quite disappointed in this article since there was not even one use of the word "alarming". What are the odds? I guess the physorg editor let one slip by.

More news stories

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.