Dutch research into fair-weather clouds important in climate predictions

Dec 08, 2008
Today, with the help of better observational methods and more powerful computers, we can get a much nicer picture of how clouds "work." Credit: TU Delft

Research at the Delft University of Technology (The Netherlands) has led to better understanding of clouds, the unknown quantity in current climate models. The Delft researcher Thijs Heus has tackled this issue with a combination of detailed computer simulations and airplane measurements. He charted data including cloud speed, temperature and the 'life span' of clouds to arrive at new observations.

The behaviour of clouds is the great unknown quantity in current climate models. To make reliable predictions on climate change, more knowledge about clouds is thus essential. Heus explains, 'What we call fair-weather clouds have posed one of the biggest challenges in atmospheric science for decades. For accurate representation of clouds in weather and climate models, it is crucial to have a solid understanding of the interaction between clouds and the environment. Today, with the help of better observational methods and more powerful computers, we can get a much nicer picture of how it works.'

Heus continues, 'A cloud is normally described as an entity in which air rises. All around the cloud, air sinks downward in compensation for the upward movement.

'We demonstrated that air far away from the cloud on average displaces very little. The biggest amount of compensatory downward flow occurs immediately surrounding the cloud, in a ring of sinking air. This ring results because cloud air mixes with the surroundings, causing the cloud water to evaporate, air to cool, and thereby sink. The interaction between the cloud and its environment as such occurs indirectly, through the buffer zone of the ring. This buffer zone has not yet been incorporated into climate models until now.

'The ring is principally created by horizontal mixing. We showed that whatever happens on the cloud top has little influence on the underlying layers.'

A cloud's behaviour is likewise affected over time by this same horizontal mixing; the air in a cloud appears not to rise continuously, but rather in bubble-shaped form. Using visualizations in a Virtual Reality-environment, Heus could reliably research this tendency for the first time.

The Royal Netherlands Meteorological Institute (KNMI), Heus' current employer, and other scientific institutes have already expressed interest in the results of his study.

Source: Delft University of Technology

Explore further: New detector sniffs out origins of methane

add to favorites email to friend print save as pdf

Related Stories

SMAP satellite extends 5-meter reflector boom

Feb 27, 2015

Like a cowboy at a rodeo, NASA's newest Earth-observing satellite, the Soil Moisture Active Passive (SMAP), has triumphantly raised its "arm" and unfurled a huge golden "lasso" (antenna) that it will soon ...

Florentine basilica gets high-tech physical

Feb 26, 2015

Late last year, two University of California, San Diego students set out for Florence, Italy, to diagnose a patient that had no prior medical record, couldn't be poked or prodded in any way, and hadn't been ...

Africa, from a CATS point of view

Feb 26, 2015

From Saharan dust storms to icy clouds to smoke on the opposite side of the continent, the first image from NASA's newest cloud- and aerosol-measuring instrument provides a profile of the atmosphere above ...

Recommended for you

New detector sniffs out origins of methane

11 hours ago

Methane is a potent greenhouse gas, second only to carbon dioxide in its capacity to trap heat in Earth's atmosphere for a long time. The gas can originate from lakes and swamps, natural-gas pipelines, deep-sea ...

The tides they are a changin'

16 hours ago

Scientists from the University of Southampton have found that ocean tides have changed significantly over the last century at many coastal locations around the world.

Lightning plus volcanic ash make glass

Mar 03, 2015

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.