Dutch research into fair-weather clouds important in climate predictions

Dec 08, 2008
Today, with the help of better observational methods and more powerful computers, we can get a much nicer picture of how clouds "work." Credit: TU Delft

Research at the Delft University of Technology (The Netherlands) has led to better understanding of clouds, the unknown quantity in current climate models. The Delft researcher Thijs Heus has tackled this issue with a combination of detailed computer simulations and airplane measurements. He charted data including cloud speed, temperature and the 'life span' of clouds to arrive at new observations.

The behaviour of clouds is the great unknown quantity in current climate models. To make reliable predictions on climate change, more knowledge about clouds is thus essential. Heus explains, 'What we call fair-weather clouds have posed one of the biggest challenges in atmospheric science for decades. For accurate representation of clouds in weather and climate models, it is crucial to have a solid understanding of the interaction between clouds and the environment. Today, with the help of better observational methods and more powerful computers, we can get a much nicer picture of how it works.'

Heus continues, 'A cloud is normally described as an entity in which air rises. All around the cloud, air sinks downward in compensation for the upward movement.

'We demonstrated that air far away from the cloud on average displaces very little. The biggest amount of compensatory downward flow occurs immediately surrounding the cloud, in a ring of sinking air. This ring results because cloud air mixes with the surroundings, causing the cloud water to evaporate, air to cool, and thereby sink. The interaction between the cloud and its environment as such occurs indirectly, through the buffer zone of the ring. This buffer zone has not yet been incorporated into climate models until now.

'The ring is principally created by horizontal mixing. We showed that whatever happens on the cloud top has little influence on the underlying layers.'

A cloud's behaviour is likewise affected over time by this same horizontal mixing; the air in a cloud appears not to rise continuously, but rather in bubble-shaped form. Using visualizations in a Virtual Reality-environment, Heus could reliably research this tendency for the first time.

The Royal Netherlands Meteorological Institute (KNMI), Heus' current employer, and other scientific institutes have already expressed interest in the results of his study.

Source: Delft University of Technology

Explore further: NASA sees Typhoon Matmo making second landfall in China

add to favorites email to friend print save as pdf

Related Stories

New meteor shower "just a memory" of what once was there

18 hours ago

The weak display of last month's Camelopardalids meteor shower, the result of the close passage of comet 209P/LINEAR, may have disappointed backyard observers, but this never-before-seen shower now has scientists ...

NASA sees powerful thunderstorms in Tropical Storm Matmo

Jul 18, 2014

Strong thunderstorms reaching toward the top of the troposphere circled Tropical Storm Matmo's center and appeared in a band of thunderstorms on the storm's southwestern quadrant. Infrared imagery from NASA's ...

Drones: Next big thing in aviation is small

Jul 17, 2014

The next big thing in aviation may be really small. With some no bigger than a hummingbird, the hottest things at this week's Farnborough International Airshow are tiny compared with the titans of the sky, ...

NASA's ten-year-old Aura satellite tracks pollutants

Jul 17, 2014

(Phys.org) —NASA's Aura satellite, celebrating its 10th anniversary on July 15, has provided vital data about the cause, concentrations and impact of major air pollutants. With instruments providing key ...

Recommended for you

Fires in the Northern Territories July 2014

13 hours ago

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

How much magma is hiding beneath our feet?

13 hours ago

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena ...

Oso disaster had its roots in earlier landslides

16 hours ago

The disastrous March 22 landslide that killed 43 people in the rural Washington state community of Oso involved the "remobilization" of a 2006 landslide on the same hillside, a new federally sponsored geological study concludes.

User comments : 0