Gene packaging tells story of cancer development

Dec 04, 2008

To decipher how cancer develops, Johns Hopkins Kimmel Cancer Center investigators say researchers must take a closer look at the packaging.

Specifically, their findings in the December 2, 2008, issue of PLoS Biology point to the three dimensional chromatin packaging around genes formed by tight, rosette-like loops of Polycomb group proteins (PcG). The chromatin packaging, a complex combination of DNA and proteins that compress DNA to fit inside cells, provides a repressive hub that keeps genes in a low expression state.

"We think the polycomb proteins combine with abnormal DNA methylation of genes to deactivate tumor suppressor genes and lock cancer cells in a primitive state," says Stephen B. Baylin, M.D., Virginia and D.K. Ludwig Professor of Oncology and senior author.

Prior to this discovery, investigators studying cancer genes, looked at gene silencing as a linear process across the DNA, as if genes were flat, one dimensional objects. Research did not take into account the way genes are packaged.

To better understand the role of the PcG packaging, the team compared embryonic cells to adult colon cancer cells. The gene studied in the embryonic cells was packaged by PcG proteins, in a low expression state, and had no DNA methylation. When the gene received signals for cells to mature, the PcG loops were disrupted and the gene was highly expressed. However, when the same gene was abnormally DNA methylated, as is the case in adult, mature colon cancer cells, the PcG packaging loops were tighter and there was no gene expression. "These tight loops touch and interact with many gene sites folding it into a structure that shuts off tumor suppressor genes," says Baylin. However, when the researchers removed DNA methylation from the cancer cells, the loops loosened somewhat, back to the state of an embryonic cell, and some gene expression was restored.

DNA methylation is a normal cellular process, but when it goes awry and genes are improperly methylated, it can shut down important tumor suppressing cell functions.

Demethylating agents, drugs that target and remove abnormal DNA methylation from genes, have been introduced as potential new cancer therapies. For these therapies to be fully effective, Baylin says, researchers may also need to look for agents that disrupt PcG loops.

Source: Johns Hopkins Medical Institutions

Explore further: Discovery reveals how bacteria distinguish harmful versus helpful viruses

add to favorites email to friend print save as pdf

Related Stories

Scientists get set for simulated nuclear inspection

17 minutes ago

Some 40 scientists and technicians from around the world will descend on Jordan in November to take part in a simulated on-site inspection of a suspected nuclear test site on the banks of the Dead Sea.

Alibaba IPO comes with unusual structure

18 minutes ago

Foreigners who want to buy Alibaba Group shares in the Chinese e-commerce giant's U.S. public offering will need to get comfortable with an unusual business structure.

Recommended for you

DNA may have had humble beginnings as nutrient carrier

7 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

7 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0