IBM Seeks to Build the Computer of the Future Based on Insights from the Brain

Nov 20, 2008
IBM scientists and university partners are one step closer to understanding the complex wiring system of the brain with the ultimate goal of building the computer of the future: one that will simulate and emulate the brain’s abilities for sensation, perception, action, interaction and cognition while rivaling its low power consumption and compact size. Understanding the process behind these seemingly effortless feats of the human brain and creating a computational theory based on it remains one of the biggest challenges for computer scientists.

(PhysOrg.com) -- In an unprecedented undertaking, IBM Research and five leading universities are partnering to create computing systems that are expected to simulate and emulate the brain’s abilities for sensation, perception, action, interaction and cognition while rivaling its low power consumption and compact size.

The digital data explosion shows no signs of slowing down -- according to analyst firm IDC, the amount of digital data is growing at a mind-boggling 60 percent each year, giving businesses access to incredible new streams of information. But without the ability to monitor, analyze and react to this information in real-time, the majority of its value may be lost. Until the data is captured and analyzed, decisions or actions may be delayed. Cognitive computing offers the promise of systems that can integrate and analyze vast amounts of data from many sources in the blink of an eye, allowing businesses or individuals to make rapid decisions in time to have a significant impact.

This video is not supported by your browser at this time.

For example, bankers must make split-second decisions based on constantly changing data that flows at an ever-dizzying rate. And in the business of monitoring the world’s water supply, a network of sensors and actuators constantly records and reports metrics such as temperature, pressure, wave height, acoustics and ocean tide. In either case, making sense of all that input would be a Herculean task for one person, or even for 100. A cognitive computer, acting as a “global brain,” could quickly and accurately put together the disparate pieces of this complex puzzle and help people make good decisions rapidly.

By seeking inspiration from the structure, dynamics, function, and behavior of the brain, the IBM-led cognitive computing research team aims to break the conventional programmable machine paradigm. Ultimately, the team hopes to rival the brain’s low power consumption and small size by using nanoscale devices for synapses and neurons. This technology stands to bring about entirely new computing architectures and programming paradigms. The end goal: ubiquitously deployed
computers imbued with a new intelligence that can integrate information from a variety of sensors and sources, deal with ambiguity, respond in a context-dependent way, learn over time and carry out pattern recognition to solve difficult problems based on perception, action and cognition in complex, real-world environments.

IBM and its collaborators have been awarded $4.9 million in funding from the Defense Advanced Research Projects Agency (DARPA) for the first phase of DARPA’s Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) initiative. IBM’s proposal, “Cognitive Computing via Synaptronics and Supercomputing (C2S2),” outlines groundbreaking research over the next nine months in areas including synaptronics, material science, neuromorphic circuitry, supercomputing simulations and virtual environments. Initial research will focus on demonstrating nanoscale, low power synapse-like devices and on uncovering the functional microcircuits of the brain. The long-term mission of C2S2 is to demonstrate low-power, compact cognitive computers that approach mammalian-scale intelligence.

“Exploratory research is in the fabric of IBM’s DNA,” said Josephine Cheng, IBM Fellow and vice president of IBM’s Almaden Research Center in San Jose. “We believe that our cognitive computing initiative will help shape the future of computing in a significant way, bringing to bear new technologies that we haven’t even begun to imagine. The initiative underscores IBM’s capabilities in bold, exploratory research and interest in powerful collaborations to understand the way the world works.”

IBM has assembled a multi-dimensional, integrated world-class team of researchers and collaborators led by Dr. Dharmendra Modha, manager of IBM’s cognitive computing initiative, to take on the challenge including Stanford University (Professors Kwabena Boahen, H. Phillip Wong, Brian Wandell), University of Wisconsin-Madison (Professor Gulio Tononi), Cornell University (Professor Rajit Manohar), Columbia University Medical Center (Professor Stefano Fusi) and University of California- Merced (Professor Christopher Kello). IBM Researchers include Dr. Stuart Parkin, Dr. Chung Lam, Dr. Bulent Kurdi, Dr. J. Campbell Scott, Dr. Paul Maglio, Dr. Simone Raoux, Dr. Rajagopal Ananthanarayanan, Dr. Raghav Singh, and Dr. Bipin Rajendran.

Recently, the IBM cognitive computing team demonstrated the near-real-time simulation at a scale of a small mammal brain using cognitive computing algorithms with the power of IBM’s BlueGene supercomputer. With this simulation capability, the researchers are experimenting with various mathematical hypotheses of brain function and structure as they work toward discovering the brain’s core computational micro and macro circuits.

In the past, the field of artificial intelligence research has focused on individual aspects of engineering intelligent machines. Cognitive computing, on the cutting edge of this line of research, seeks to engineer holistic intelligent machines that neatly tie together all of the pieces. IBM’s cognitive computing initiative was born out its 2006 Almaden Institute, which annually brings together top minds to address fundamental challenges at the very edge of science and technology. IBM has a rich history in the area of artificial intelligence research going all the way back to 1956 when IBM performed the world’s first large-scale (512 neuron) cortical simulation.

Provided by IBM

Explore further: Google's Street View address reading software also able to decipher CAPTCHAs

add to favorites email to friend print save as pdf

Related Stories

IBM posts lower 1Q earnings amid hardware slump (Update)

17 hours ago

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exacerbated by weaker demand in China and emerging markets.

IBM brings Watson to Africa

Feb 06, 2014

IBM has launched a 10-year initiative to bring Watson and other cognitive systems to Africa in a bid to fuel development and spur business opportunities across the world's fastest growing continent. Dubbed ...

Brain in a box: Computer R&D teams explore new models

Jan 03, 2014

Beyond technology headlines announcing new wearable designs, curved displays and 3D printing machines, there is another research path. Researchers continue to explore how computers may learn from their own ...

UW team part of IBM 'cognitive' computing chip project

Aug 19, 2011

(PhysOrg.com) -- University of Wisconsin-Madison researchers are part of the IBM-led team that has unveiled a new generation of experimental computer chips - the first step in a project to create a computer that borrows pri ...

Recommended for you

Ant colonies help evacuees in disaster zones

Apr 16, 2014

An escape route mapping system based on the behavior of ant colonies could give evacuees a better chance of reaching safe harbor after a natural disaster or terrorist attack by building a map of showing the shortest routes ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Going
not rated yet Feb 22, 2009
A brain is not just a physical implementation , it embodies the software which learns from the world around it. An artificial brain would only be as good as its experience and education.

More news stories

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...