Trapping Greenhouse Gases (Without Leaks)

Nov 19, 2008

Of all the possible ways of reducing future greenhouse gas emissions, one of the most immediately feasible is carbon dioxide "sequestration," which involves compressing the gas into a liquid and piping it deep underground instead of releasing it into the atmosphere. The Earth has abundant geological formations known as saline aquifers that would seem to be ideal storage bins for such sequestered carbon.

However, says Jerome Neufeld of the University of Cambridge in England, if carbon sequestration is to play a major role in reducing greenhouse gas emissions, the process needs to be deployed on a global scale, and new tools will be needed to monitor the long-term stability and fate of trapped gas.

The principle of sequestration is simple. Saline aquifers are basically porous regions of rock soaked with brackish fluids. The density of carbon dioxide is much less than that of the brine, so gas pumped into the aquifer will rise through the porous rock until it hits an impermeable "cap" rock. Over very long time scales, trapped carbon dioxide will saturate the brine and become mineralized. But what happens in the short term? If you pump carbon dioxide into saline aquifers, will it stay put and mineralize or leak away completely?

Neufeld and his colleagues have created a simple tool to predict the fate of carbon dioxide "plumes" rising though aquifers after being pumped underground. Their model shows how the shape of rising plumes is influenced by the structure of the surrounding rock, and it suggests that there are advantages to injecting carbon dioxide into reservoirs that are like geological layer cakes, with alternating stacks of porous and seal rock. When a plume reaches an impermeable boundary, it spreads until it can rise again, filling out a shape that looks like an inverted Christmas tree. As the plume pools it mixes with the brine, ultimately resulting in a more stable long-term sequestration.

Neufeld's talk, "Plume dynamics in heterogeneous porous media" will be held on Tuesday, November 25, 2008, at the 61st Annual Meeting of the American Physical Society.

Provided by American Institute of Physics

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

add to favorites email to friend print save as pdf

Related Stories

Researcher studies interactions between land and water

Nov 26, 2014

Early one morning last January, MIT undergraduate Theresa Oehmke was eating breakfast at the Kilauea Military Camp on Hawaii's Big Island when a colleague burst into the room, yelling, "Oh my god, the plume, ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

Recommended for you

Scientists film magnetic memory in super slow-motion

9 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.