Shifts in soil bacterial populations linked to wetland restoration success

Nov 12, 2008

A new study led by Duke University researchers finds that restoring degraded wetlands -- especially those that had been converted into farm fields -- actually decreases their soil bacterial diversity.

But that's a good thing, say the study's authors, because it marks a return to the wetland soils' natural conditions.

"It sounds counter-intuitive, but our study shows that in restored wetlands, decreased soil bacterial diversity represents a return to biological health," said Wyatt H. Hartman, a Ph.D. candidate in wetlands and environmental microbiology at Duke's Nicholas School of the Environment.

"Our findings are novel because they are the opposite of the response seen in terrestrial ecosystems, where restoration improves conditions from a more barren, degraded state," said Curtis J. Richardson, director of the Duke University Wetland Center and professor of resource ecology at the Nicholas School. Richardson is Hartman's faculty adviser.

Their report on the study will be published online this week by Friday in the Proceedings of the National Academy of Sciences.

Soils in undisturbed wetlands present harsh conditions, with elevated acidity and low oxygen and nutrient availability in which fewer bacterial groups can survive and grow, they explained. In comparison, former wetlands that have been drained, limed and fertilized for farming host greater soil bacterial diversity because they present conditions more suitable for bacterial growth.

"The bacterial communities in these fields almost resemble those found in wastewater treatment plants," Hartman noted.

Soil bacteria are essential to wetland functions that are critical to environmental quality, such as filtering nutrients and storing carbon. "The mixture of bacterial groups in wetland soils can reflect the status of wetland functioning, and the composition of these populations is as telling as their diversity," Richardson said.

Measuring whether the right mix of bacteria is returning to a restored wetland can be a valuable biological indicator scientists can use to evaluate restoration success, he added.

"We found that one of the simplest and most promising indicators of restoration success was the ratio of Proteobacteria, which have the highest affinity for nutrient-rich environments, to Acidobacteria, which have the highest tolerance for poor conditions," Hartman said.

The researchers determined soil bacterial composition and diversity within restored wetlands, agricultural fields and undisturbed wetlands across North Carolina's coastal plain. They sampled these paired land-use categories across three distinct types of wetlands: pocosin bogs, floodplain swamps and backwater swamps that were not connected to streams.

Samples were also taken from sections of the Everglades, the largest wetland in the United States, where a $10.9 billion effort is now underway to remediate the effects of agricultural runoff.

"We identified bacterial groups by their evolutionary relationships, which were determined by sequencing DNA extracted from soils," Hartman said. "This approach allowed us to capture a much greater diversity of bacteria than would be possible using conventional laboratory culturing, which works for only a small fraction of the 10,000 to 1 million species of bacteria that can be found in a single cubic centimeter of soil."

Previously, researchers have used genetic techniques to target known organisms or bacterial groups in wetland soils, he said. "But this study is unique in that we used these methods to capture the full range of bacterial groups present, and determine how their composition shifts with land-use changes and restoration."

"These types of findings can only be obtained in studies done on sites that have been restored and studied over a number of years and assessed with these modern techniques," Richardson said.

Wetlands filter and reduce nutrients and pollutants from agricultural and urban runoff as well as improve water quality and store around 25 percent of the world's soil carbon, while covering only 4 to 6 percent of its land mass.

More than half of original wetland acreage in the U.S. has been destroyed or degraded, but some has been restored in recent decades under the federal government's "no net loss" policy.

"Re-establishment of microbial communities indicates a restoration of the biological functions of soils. This study across a wide range of wetlands is the first to establish that shifts in soil bacteria populations may be a key marker of restoration success," Richardson said.

Source: Duke University

Explore further: Hopes, fears, doubts surround Cuba's oil future

add to favorites email to friend print save as pdf

Related Stories

California's sea otter numbers holding steady

Sep 23, 2014

When a sea otter wants to rest, it wraps a piece of kelp around its body to hold itself steady among the rolling waves. Likewise, California's sea otter numbers are holding steady despite many forces pushing ...

Wetlands are bad and good news for Arctic warming: study

Jun 07, 2011

(PhysOrg.com) -- Seasonal wetlands in Arctic regions will initially persist longer due to global warming but then shrink as temperatures rise further, according to new study into how climate change will progress this century.

Study shows bacteria combat dangerous gas leaks

Apr 28, 2014

Bacteria could mop up naturally-occurring and man-made leaks of natural gases before they are released into the atmosphere and cause global warming - according to new research from the University of East Anglia.

Recommended for you

Rising anger as Nicaragua canal to break ground

3 hours ago

As a conscripted soldier during the Contra War of the 1980s, Esteban Ruiz used to flee from battles because he didn't want to have to kill anyone. But now, as the 47-year-old farmer prepares to fight for ...

Hopes, fears, doubts surround Cuba's oil future

Dec 20, 2014

One of the most prolific oil and gas basins on the planet sits just off Cuba's northwest coast, and the thaw in relations with the United States is giving rise to hopes that Cuba can now get in on the action.

New challenges for ocean acidification research

Dec 19, 2014

Over the past decade, ocean acidification has received growing recognition not only in the scientific area. Decision-makers, stakeholders, and the general public are becoming increasingly aware of "the other carbon dioxide ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GrayMouser
5 / 5 (1) Nov 12, 2008
They have to have some sign. The wildlife seems intent on doing whatever it wants regardless of the restoration attempts.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.