Improved spectrometer based on nonlinear optics

Nov 12, 2008

Scientists at Stanford University and Japan's National Institute of Informatics have created a new highly sensitive infrared spectrometer. The device converts light from the infrared part of the spectrum to the visible part, where the availability of superior optical detectors results in strongly improved sensing capabilities.

The research will appear in the Nov. 24 issue of Optics Express, the Optical Society's open access journal. The new spectrometer is 100 times more sensitive than current commercial optical spectrum analyzers used in industrial applications such as optical communication, semiconductor microelectronics and forensic analysis.

Current spectrometers being used on the market today cover a wide spectral range, allow for moderately fast wavelength sweeps, have a good spectral resolution and don't require cryogenic cooling. However, the sensitivity of these instruments is limited, making them unsuitable for capturing single-photon-level spectra at telecommunication wavelengths.

Cryogenic cooling can increase the sensitivity of these devices, yet reduces the usefulness for industrial applications. One possible solution is to up-convert near-infrared to visible light in a nonlinear medium. The up-converted photons can then be detected using a single-photon detector for visible light.

The authors use a single-photon counting module, which results in 100 times better sensitivity. They implemented the frequency conversion via sum-frequency generation in a periodically poled lithium niobate waveguide, which can be thought of as combining two low-energy photons to get one high-energy photon.

Key Findings

-- The up-conversion based spectrometer's sensitivity is 100 times higher compared to current commercial optical spectrum analyzers.

-- Cryogenic cooling is not required for increased sensitivity, making the device practical for a variety of industrial applications.

-- The cost and system complexity of the spectrometer is reduced because it only uses one single-photon detector instead of an array of detectors.

Citation: "Waveguide-Based Single-Pixel Up-Conversion Infrared Spectrometer," Optics Express, Vol. 16, Issue 24.

Source: Optical Society of America

Explore further: Black phosphorus is new 'wonder material' for improving optical communication

add to favorites email to friend print save as pdf

Related Stories

Rosetta data give closest-ever look at a comet

Jan 22, 2015

On Nov. 12, 2014, the European Space Agency's Rosetta mission made history when its Philae lander touched down on the surface of comet 67P/Churyumov-Gerasimenko. While this exciting technical achievement ...

NIST 'combs' the atmosphere to measure greenhouse gases

Oct 29, 2014

By remotely "combing" the atmosphere with a custom laser-based instrument, researchers from the National Institute of Standards and Technology (NIST), in collaboration with researchers from the National Oceanic ...

Recommended for you

Argonne research expanding from injectors to inhalers

15 hours ago

There is a world of difference between tailpipes and windpipes, but researchers at the Department of Energy's Argonne National Laboratory have managed to link the two with groundbreaking research that could ...

Pennies reveal new insights on the nature of randomness

22 hours ago

The concept of randomness appears across scientific disciplines, from materials science to molecular biology. Now, theoretical chemists at Princeton have challenged traditional interpretations of randomness ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.