Silicon optical fiber made practical

Oct 28, 2008

Scientists at Clemson University for the first time have been able to make a practical optical fiber with a silicon core, according to a new paper published in the current issue of the Optical Society's open-access journal, Optics Express.

Led by Professor John Ballato and including fiber pioneer Roger Stolen, the team of scientists was able to create this new fiber by employing the same commercial methods that are used to develop all-glass fibers, making silicon fibers viable alternatives to glass fibers for selected specialty applications. This advance ultimately should help increase efficiency and decrease power consumption in computers and other systems that integrate photonic and electronic devices.

Optical fibers carry an increasing fraction of phone calls, television programs and Internet traffic. The main advantage of using optical fibers is higher bandwidth, which means faster downloads from the Web, for example. The ability to produce silicon fibers commercially would create the opportunity for more compact devices with decreased power consumption in telecommunications and beyond.

"In essence, we've married optoelectronics with optical fibers," said Ballato. "In the past, we've needed one structure to process light and another to carry it. With a silicon fiber, for the first time, we have the ability to greatly enhance the functionality in one fiber."

Usually an optical fiber is made by starting with a glass core, wrapping it with a cladding made from a slightly different glass, and then heating the structure until it can be pulled out into long wires. This works well enough, but for some wavelengths of light, a core made of pure crystalline silicon, like the one developed by the Clemson team, would better carry signals. Additionally, crystalline silicon exhibits certain nonlinear properties (in which the output is not proportional to the input) that are many orders of magnitude larger than for conventional silica glass. This would, for example, allow for the amplification of a light signal or for the shifting of light from one wavelength to another. The development of a silicon fiber opens the way for signal processing functions that are currently done electronically or in separate optical circuits to be performed directly inside the fiber, which allows for more compact, efficient systems.

Some fibers have been made with a silicon core, but the Clemson version (with collaborators at UCLA, Northrop Grumman and Elmira College) is the first to employ standard mass-production methods, bringing them closer to commercial reality.

Right now the amount of energy lost when the lightwaves move down this silicon fiber is no better than for other fibers at the longer wavelengths, but Ballato says that the work so far has been a proof-of-concept, and he expects energy losses to decline signficantly with continued optimization.

Source: Optical Society of America

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Preventing greenhouse gas from entering the atmosphere

Feb 05, 2015

A novel class of materials that enable a safer, cheaper, and more energy-efficient process for removing greenhouse gas from power plant emissions has been developed by a multi-institution team of researchers. ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.