The Case of the Missing Gamma-ray Bursts

Oct 23, 2008
An artist's concept of the first stars forming after the Big Bang. Image: NASA.

Gamma-ray bursts are by far the brightest and most powerful explosions in the Universe, second only to the Big Bang itself. So it might seem a bit surprising that a group of them has gone missing.

A single gamma-ray burst (GRB) can easily outshine an entire galaxy containing hundreds of billions of stars. Powerful telescopes can see them from clear across the Universe. And because the deeper you look into space, the farther back in time you see, astronomers should be able to see GRBs from the time when the very first stars were forming after the Big Bang.

Yet they don't. Gamma-ray bursts from that early epoch seem to be missing, and astronomers are wondering where they are.

"This is one of the biggest questions in the gamma-ray business," says astrophysicist Neil Gehrels of the Goddard Space Flight Center. "It's something we're going to be talking a lot about today at the GRB Symposium."

Gehrels has joined about a hundred of his colleagues from 25 countries for the 6th Huntsville Gamma-ray Burst Symposium underway this week in Huntsville, Alabama. Missing gamma-ray bursts are one of the top mysteries on the agenda.

Until recently, experts were grappling with an even more fundamental question about GRBs: what the heck are they? Astronomers had observed these astonishing bursts since the 1960s, but nobody could imagine an event powerful enough to create them.

The answer eventually came from Stan Woosley, a theoretical astrophysicist at the University of California in San Diego. He suggested that when young, supermassive stars with low metal content collapse under their own weight to form black holes, the stars' rotation funnels the explosive energy into two streamlined jets that shoot out from the stars' poles, like the axis of a gyro. We only see the burst if one of these two jets happens to be pointed toward Earth. The concentration of energy into narrow jets is why GRBs that we do observe appear so remarkably bright.

Note: Woosley's"collapsar model" explains the common long gamma-ray burst, explosions lasting 2 seconds or more. The cause of another class of shorter-lived GRBs is still a mystery, but that's another story.

The first waves of star formation after the Big Bang should have produced plenty of metal-poor supermassive stars ripe for collapse. If true, GRBs from that epoch should be abundant. So where are they?

One possibility is they're not missing at all.

"Part of the problem is that burst profiles get stretched out by the expansion of the Universe, so it is harder to recognize them as bursts in the first place," explains astrophysicist Lynn Cominsky of Sonoma State University. "The bursts could be happening, but we're not noticing them."

Another trouble is the afterglow—the fading debris that tells so much about a burst, including its distance. "Afterglows from the most distant GRBs may be too red shifted to be seen by current generations of telescopes," she notes.

"Red shift" is how much the wavelength of light is stretched when it travels to us across the expanding Universe. The farther away a thing is, the more its light is stretched, and the greater the red shift. Until recently, the largest red shift ever measured for a GRB was 6.3. Then, last month, Gehrels and colleagues using NASA's Swift satellite found one with a red shift of 6.7 or 12.8 billion light years away. So far, that's the record.

"Gamma-ray bursts are predicted in the red shift range 10 to 20, but so far no one has seen anything beyond 6.7," says Cominsky.

The luminous afterglow of such distant bursts would be red shifted all the way into the infrared. "There's a huge effort right now to try to get those infrared observations," Gehrels says, but in the meantime it's difficult to verify whether a candidate 7+ GRB is truly that far away.

As infrared telescopes improve, scientists should eventually be able to measure the distance to GRBs with red shifts greater than 7 — if they exist. And that's a big IF. What if the missing GRBs really are missing?

"That would teach us something very interesting about the Universe," says Gehrels.

The Sixth Huntsville Gamma-Ray Burst Symposium 2008 is sponsored by NASA's Fermi and Swift Projects and hosted by the Fermi GBM Team based at the Marshall Space Flight Center in Huntsville.

Link: grbhuntsville2008.cspar.uah.edu/content/programme.html

Source: by Dr. Tony Phillips, Science@NASA

Explore further: Planck helps to understand the macrostructure of the universe

Related Stories

DARPA seeks new positioning, navigation, timing solutions

6 hours ago

The Defense Advanced Research Projects Agency (DARPA), writing about GPS, said: "The military relies heavily on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT), but GPS access is easily blocked by methods such as jamming. In addition, many environments in which our mil ...

Lights out in Australia as Earth Hour kicks off

6 hours ago

The Sydney Harbour Bridge and the sails on the nearby Opera House went dark Saturday, as lights on landmarks around Australia were switched off for the global climate change awareness campaign Earth Hour.

Future US Navy: Robotic sub-hunters, deepsea pods

10 hours ago

The robotic revolution that transformed warfare in the skies will soon extend to the deep sea, with underwater spy "satellites," drone-launching pods on the ocean floor and unmanned ships hunting submarines.

Recommended for you

Image: The tumultuous heart of the Large Magellanic Cloud

12 hours ago

A scene of jagged fiery peaks, turbulent magma-like clouds and fiercely hot bursts of bright light. Although this may be reminiscent of a raging fire or the heart of a volcano, it actually shows a cold cosmic ...

Rocky planets may orbit many double stars

Mar 30, 2015

Luke Skywalker's home in "Star Wars" is the desert planet Tatooine, with twin sunsets because it orbits two stars. So far, only uninhabitable gas-giant planets have been identified circling such binary stars, ...

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

yyz
not rated yet Oct 28, 2008
Interested readers may want to check out 'Where Have All The Gamma Ray Bursts Gone?' posted Oct 23, 2008 at the Universe Today site @ http://www.univer...s-gone/. Many important aspects of this story are discussed, and Don Alexander, who wrote up the paper discussed in this story answers many reader questions in an easy to digest fashion. Check it out!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.