The earliest blacksmiths may have been bacteria

Oct 16, 2008
A 2.8 billion-year-old piece of rock may hold a clue that unfolds the age old mystery behind the formation of iron.

(PhysOrg.com) -- Talk about a Cold Case. This mystery goes back to when there was no oxygen on the planet and bacteria were the most sophisticated life form. But Kurt Konhauser holds a clue to answering some ancient questions. It's a 2.8 billion-year-old piece of rock.

Konhauser is a professor in the Department of Earth and Atmospheric Sciences. The bookcase that lines his office at the University of Alberta is loaded with rock samples. Each one could be hiding secrets about the earliest days of the planet.

Konhauser holds a small orange-coloured rock up to the window. The daylight reveals thin lines of black streaking across the rock. The black lines are iron and by all rights shouldn't be there.

Konhauser is incredulous.

"How did iron get in a rock that dates back this far?"

He grabs a piece of paper, scribbling out a chemical formula, and continues talking. "You need oxygen in the ocean to oxidize the iron and 2.8 billion years ago there was no oxygen on the planet, so there had to be another way that iron was oxidized and turned into rock."

Konhauser's pride is plain to see. "We figured out how it happened."

It was bacteria, the only form of life on Earth at that time. The oceans were dense with photosynthetic bacteria and dissolved iron poured into the seas from active volcanoes. In this stew, iron became oxidized. Konhauser says 90 per cent of Earth's iron was produced this way. When prospectors find iron deposits today they can be as thin as a pencil line or massive bands or rock, hundreds of metres thick.

"This is one of the earliest examples of life interacting with the planet."

In addition to identifying the role of bacteria, Konhauser and his colleagues figured out why, over the course of millions of years, bands of iron deposits were intermittent, sometimes disappearing completely from the geological record.

Konhauser uses simple language to explain the phenomenon. "During spring and summer, when the bacteria are happy and active, they oxidize iron." And the reverse is true, he says: cold weather made the bacteria "unhappy" and oxidation shuts down. With that knowledge scientists can use the size and frequency of iron deposits to plot the climate changes that affected the young planet. "Happy" bacteria could work feverishly for decades, and then vanish for just as long.

Konhauser and his colleagues from Germany published their finding this month in Nature Geoscience. He's hopeful more breakthroughs are coming.

"We have a good idea of how life affects Earth today and now a new window about the massive effects the simplest form of life had on this planet. How it changed Earth and it still impacts us today."

Provided by University of Alberta

Explore further: How productive are the ore factories in the deep sea?

add to favorites email to friend print save as pdf

Related Stories

Shedding light on ancient oceans

Nov 11, 2008

(PhysOrg.com) -- There's a powerful source of energy humming away inside a laboratory at the University of Alberta. The energy is ultra-violet light, and it packs the same spectrum of rays that kept this planet ...

Recommended for you

How productive are the ore factories in the deep sea?

5 hours ago

About ten years after the first moon landing, scientists on earth made a discovery that proved that our home planet still holds a lot of surprises in store for us. Looking through the portholes of the submersible ...

NASA image: Volcanoes in Guatemala

9 hours ago

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

User comments : 0

More news stories

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...

Untangling Brazil's controversial new forest code

Approved in 2012, Brazil's new Forest Code has few admirers. Agricultural interests argue that it threatens the livelihoods of farmers. Environmentalists counter that it imperils millions of hectares of forest, ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...