Mars Reconnaissance Orbiter Reveals Rock Fracture Plumbing on Mars

Sep 25, 2008
Dense clusters of crack-like structures called deformation bands form the linear ridges prominent in this image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. Image credit: NASA/JPL-Caltech/Univ. of Arizona

(PhysOrg.com) -- NASA's Mars Reconnaissance Orbiter has revealed hundreds of small fractures exposed on the Martian surface that billions of years ago directed flows of water through underground Martian sandstone.

Researchers used images from the spacecraft's High Resolution Imaging Science Experiment, or HiRISE, camera. Images of layered rock deposits at equatorial Martian sites show the clusters of fractures to be a type called deformation bands, caused by stresses below the surface in granular or porous bedrock.

"Groundwater often flows along fractures such as these, and knowing that these are deformation bands helps us understand how the underground plumbing may have worked within these layered deposits," said Chris Okubo of the U.S. Geological Survey in Flagstaff, Ariz.

Visible effects of water on the color and texture of rock along the fractures provide evidence that groundwater flowed extensively along the fractures.

"These structures are important sites for future exploration and investigations into the geological history of water and water-related processes on Mars," Okubo and co-authors state in a report published online this month in the Geological Society of America Bulletin.

Deformation band clusters in Utah sandstones, as on Mars, are a few meters or yards wide and up to a few kilometers or miles long. They form from either compression or stretching of underground layers, and can be precursors to faults. The ones visible at the surface have become exposed as overlying layers erode away. Deformation bands and faults can strongly influence the movement of groundwater on Earth and appear to have been similarly important on Mars, according to this study.

"This study provides a picture of not just surface water erosion, but true groundwater effects widely distributed over the planet," said Suzanne Smrekar, deputy project scientist for the Mars Reconnaissance Orbiter at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Groundwater movement has important implications for how the temperature and chemistry of the crust have changed over time, which in turn affects the potential for habitats for past life."

The recent study focuses on layered deposits in Mars' Capen crater, approximately 70 kilometers (43 miles) in diameter and 7 degrees north of the equator. This formerly unnamed crater became notable due to this discovery of deformation bands within it and was recently assigned a formal name. The crater was named for the late Charles Capen, who studied Mars and other objects as an astronomer at JPL's Table Mountain Observatory in Southern California and at Lowell Observatory, Flagstaff, Ariz.

The HiRISE camera is one of six science instruments on the orbiter. It can reveal smaller details on the surface than any previous camera to orbit Mars. The orbiter reached Mars in March 2006 and has returned more data than all other current and past missions to Mars combined.

Provided by NASA

Explore further: Start of dwarf planet mission delayed after small mix-up

Related Stories

Data deluge: MLB rolls out Statcast analytics on Tuesday

41 minutes ago

Which outfielder sprints the fastest and runs the longest to snag line drives into the gap? Which shortstop is best at throwing from the grass to nip the runner at first? Which catcher gets the ball to second ...

Air pollution levels drop in China: Greenpeace

1 hour ago

Air pollution levels in some of China's smoggiest cities fell by nearly a third in the first quarter of this year, environmental campaign group Greenpeace said on Tuesday.

Obama in fresh push on climate change

1 hour ago

US President Barack Obama will travel to Florida's Everglades Wednesday hoping to reframe the debate on climate change ahead of a vital few months that will shape his environmental legacy.

Recommended for you

Can sound help us detect 'earthquakes' on Venus?

Apr 23, 2015

Detecting an "earthquake" on Venus would seem to be an impossible task. The planet's surface is a hostile zone of crushing pressure and scorching temperatures—about 874 degrees F, hot enough to melt lead—that ...

Titan's atmosphere useful in study of hazy exoplanets

Apr 23, 2015

With more than a thousand confirmed planets outside of our solar system, astronomers are attempting to identify the atmospheres of these distant bodies to determine if they could possibly host life.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
1 / 5 (3) Sep 25, 2008
Is the resolution better than 1 meter (43 cm)?
Are ALL the photo's available to the public?
Have ANY of the photo's been doctored (resolution reduced) before releasing to the public?
if yes, what aren't we supposed to see?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.