Mars magnetic field mystery explained

Sep 25, 2008
Mars

(PhysOrg.com) -- So much attention has been paid to the similarities and differences between Earth and Mars that we often look to the ancient red planet for signposts in our own planet's future. A U of T physicist, whose work is published this week in the prestigious international journal Science, may have explained some key differences in the magnetic fields of the two planets.

On Mars, the magnetic fields frozen into surface rocks over four-billion-years-old provide a glimpse of an ancient era when the planet possessed a global magnetic field generated by motions in its fluid core.

"If Mars' past magnetic field generation process -- called a dynamo -- worked like Earth's does today, then we would expect similar magnetic field strengths in both the northern and southern hemispheres," said U of T Professor Sabine Stanley, lead author of the study.

"But Mars' crustal magnetic fields are strongest only in the southern hemisphere," she said.

This asymmetry in magnetic field strengths is correlated with another odd ancient crustal feature on Mars. The northern hemisphere crust is thinner and lower than the southern hemisphere crust. Possible explanations for this dichotomy include a giant low-angle impact in the northern hemisphere, or a large-scale hemispheric circulation pattern in Mars' mantle from which the crust formed. Both of these scenarios have implications for the temperature at the core-mantle boundary of Mars, making the northern boundary warmer than the southern boundary.

Stanley and colleagues from MIT and Brown University wondered if the crustal dichotomy formation process could also explain the hemispheric magnetic intensity differences.To investigate, they created a computer simulation for Mars' past dynamo that takes into account the hemispheric temperature differences imposed by Mars' mantle on the core. In the resulting simulation, strong magnetic fields were only generated in the southern hemisphere.

"It is encouraging when the solution to one problem also solves another problem," said Stanley. Previous hypotheses for the magnetic field asymmetry relied on processes that altered the northern hemisphere crust after Mars' dynamo died. "In our model, the proposed formation mechanism for the crustal dichotomy also explains the strange magnetic fields frozen into the rocks at that time."

The ancient magnetic field pattern also has implications for Mars' ancient atmosphere. It is difficult to explain the rapid loss of Mars' ancient atmosphere if the planet possessed a strong magnetic field at that time.

"Our model of Mars' past dynamo may help since the magnetic field would only be strong in the southern hemisphere. Atmospheric removal could still be efficient in the northern hemisphere," explained Stanley.

Provided by University of Toronto

Explore further: Exploring X-ray phase tomography with synchrotron radiation

add to favorites email to friend print save as pdf

Related Stories

First light for MAVEN (w/ Video)

Oct 13, 2014

After 10-month voyage across more than 400 million miles of empty space, NASA's MAVEN spacecraft reached Mars on Sept. 21st 2014. Less than 8 hours later, the data started to flow.

Coronal mass ejections at Mars

Sep 24, 2014

Looking across the Mars landscape presents a bleak image: a barren, dry rocky view as far as the eye can see. But scientists think the vista might once have been quite different. It may have teemed with water ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Light of life

Aug 27, 2014

A fluorescent microscopic view of cells from a type of bone cancer, being studied for a future trip to deep space – aiming to sharpen our understanding of the hazardous radiation prevailing out there.

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

16 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

16 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

17 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Keter
3.3 / 5 (6) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.
holmstar
5 / 5 (3) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.


The general consensus is that Earth and Mars ARE about the same age...

Ancient is only referring to the time that Mars had a strong magnetic field and a relatively thick atmosphere.

Whereas Earth still currently has both of those, Mars lost them in "ancient" times.
D666
5 / 5 (4) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.


If you are referring to the use of the word in the first sentence, I think that's just bad reportage. Generally though, Mars' surface is probably considered old in comparison to Earth's, simply because tectonics stopped so long ago.