No oxygen in Eastern Mediterranean bottom-water

Sep 24, 2008
A sediment sample used for this research. The dark-green bed is organic-rich sediment from sapropel S1.

Research from Utrecht University shows that there is an organic-rich bed of sediment in the floor of the Eastern Mediterranean. This bed formed over a period of about 4000 years under oxygen-free bottom-water conditions. A wet climatic period was responsible for the phenomenon. According to climate scenarios, the climate may become wetter in this area, potentially giving rise again to a period of oxygen-free bottom-water. These results are published in the September issue of Nature Geoscience.

Alternating organic-rich and organic-poor beds have been deposited on the floor of the Eastern Mediterranean. These deposits coincide with the alternation of wet and dry climatic periods.

Researchers believe that the organic-rich beds, called sapropels, can originate in two ways: 1. More organisms live in the surface water because, for example, rivers introduce more nutrients. As a result, more organisms sink to the bottom when they die. 2. The organic material is better preserved. If dead organisms sink to an oxygen-free bottom, the organic material breaks down less well.

Gert de Lange investigated the most recently developed bed, sapropel S1. This bed formed between 9800 and 5700 years ago. At that time, an increased influx of fresh water during a wet climatic period led to the formation of this organic-rich bed. This formation occurred simultaneously over the entire Eastern Mediterranean at water depths of more than 200 metres. During this 4100-year period, the deep Eastern Mediterranean was found to be devoid of oxygen at water depths below 1800 metres. Going upward from this depth level, the organic content of sapropel S1 decreases corresponding to an increasing average oxygen content and concomitant breakdown of the organic material.

This research shows that there is a high chance of finding organic-rich deposits in an environment devoid of oxygen. Climate change may contribute to the formation of organic-rich beds. Besides sequestering large quantities of CO2, these separated beds can also be converted into oil over the course of time.

This research forms part of the PASS project, a marine programme in the Eastern Mediterranean. NWO Earth and Life Sciences financed the necessary logistics, such as ship and equipment lease via the National Research Cruise Programme.

Provided by NWO

Explore further: New, tighter timeline confirms ancient volcanism aligned with dinosaurs' extinction

add to favorites email to friend print save as pdf

Related Stories

Washington takes on Uber with its own taxi app

4 hours ago

Washington is developing a smartphone app to enable its taxis to compete head-on with Uber and other ride-sharing services, the US capital's taxi commission said Friday.

Comet 67P/Churyumov-Gerasimenko in living color

4 hours ago

Rosetta's OSIRIS team have produced a color image of Comet 67P/Churyumov-Gerasimenko as it would be seen by the human eye. As anticipated, the comet turns out to be very grey indeed, with only slight, subtle ...

EU clean air, waste laws at risk

4 hours ago

EU Commission chief Jean-Claude Juncker faces a clash with lawmakers after leaked documents Friday revealed his plans to drop laws on clean air and waste recycling.

Recommended for you

Improving forecasts for rain-on-snow flooding

8 hours ago

Many of the worst West Coast winter floods pack a double punch. Heavy rains and melting snow wash down the mountains together to breach riverbanks, wash out roads and flood buildings.

The Greenland Ice Sheet: Now in HD

8 hours ago

The Greenland Ice Sheet is ready for its close-up. The highest-resolution satellite images ever taken of that region are making their debut. And while each individual pixel represents only one moment in time, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.