Carbon nanostructures form the future of electronics and optoelectronics

Sep 23, 2008

This year's Julius Springer Prize for Applied Physics will be awarded to Phaedon Avouris and Tony Heinz for their pioneering work on the electrical and optical properties of nanoscale carbon materials including carbon nanotubes − from basic science to exciting applications. The award, accompanied by US$ 5,000, will be presented at the Julius Springer Forum on Applied Physics 2008 at Harvard University in Cambridge, MA, on 27 September 2008.

Future electronics and optoelectronics will be based on carbon nanostructures. Avouris and Heinz's studies of the electronic properties of nanotubes and graphene aim at developing a future nanoelectronic technology with devices that will be vastly more compact, fast and energy efficient than the current silicon-based devices. The optoelectronic studies aim at uniting and integrating this electronic technology with an optical technology based on the same materials. Their research will aid in the development of future high-speed electronics, communications systems, and sensors for diverse applications. Industries ranging from automobile, aviation, space and energy conversion/conservation to bionanotechnology and medicine are likely to benefit from their research.

Phaedon Avouris received his B.Sc. degree from Aristotle University in Greece and was awarded his Ph.D. degree in physical chemistry at Michigan State University. He is currently an IBM Fellow and manager of Nanoscience and Nanotechnology at IBM's Research Division at the Watson Research Center in Yorktown Heights, NY. He has also been an adjunct professor at Columbia University and the University of Illinois.

Tony Heinz earned his B.Sc. from Stanford University and his Ph.D. degree in physics from the University of California, Berkeley. He is the David M. Rickey Professor in the Departments of Physics and Electrical Engineering at Columbia University, where he has been since 1995. Previous to this, he worked at IBM's Research Division at the Watson Research Center.

The Julius Springer Prize for Applied Physics recognizes researchers who have made an outstanding and innovative contribution to the fields of applied physics. It has been awarded annually since 1998 by the Editors-in-Chief of the Springer journals Applied Physics A – Materials Science & Processing and Applied Physics B – Lasers and Optics.

Source: Springer

Explore further: Nanomaterials to preserve ancient works of art

add to favorites email to friend print save as pdf

Related Stories

Taming the Boltzmann equation

17 hours ago

Physicists at Ludwig Maximilian University of Munich, Germany, have developed a new algorithm that is capable of solving the Boltzmann equation for systems of self-propelled particles. The new method also ...

New technique allows ultrasound to penetrate bone, metal

14 hours ago

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

It's filamentary: How galaxies evolve in the cosmic web

13 hours ago

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

A phonetic key to prosociality and engagement

Nov 19, 2014

(Phys.org) —People are more likely to help someone whose name ends with the "hard e" (/ē/) sound; women, in particular, prefer /ē/ sounds; and children's behavioral patterns seem to indicate that asking "Mommy?" for help ...

Recommended for you

Nanomaterials to preserve ancient works of art

9 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

9 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.