Carbon nanostructures form the future of electronics and optoelectronics

Sep 23, 2008

This year's Julius Springer Prize for Applied Physics will be awarded to Phaedon Avouris and Tony Heinz for their pioneering work on the electrical and optical properties of nanoscale carbon materials including carbon nanotubes − from basic science to exciting applications. The award, accompanied by US$ 5,000, will be presented at the Julius Springer Forum on Applied Physics 2008 at Harvard University in Cambridge, MA, on 27 September 2008.

Future electronics and optoelectronics will be based on carbon nanostructures. Avouris and Heinz's studies of the electronic properties of nanotubes and graphene aim at developing a future nanoelectronic technology with devices that will be vastly more compact, fast and energy efficient than the current silicon-based devices. The optoelectronic studies aim at uniting and integrating this electronic technology with an optical technology based on the same materials. Their research will aid in the development of future high-speed electronics, communications systems, and sensors for diverse applications. Industries ranging from automobile, aviation, space and energy conversion/conservation to bionanotechnology and medicine are likely to benefit from their research.

Phaedon Avouris received his B.Sc. degree from Aristotle University in Greece and was awarded his Ph.D. degree in physical chemistry at Michigan State University. He is currently an IBM Fellow and manager of Nanoscience and Nanotechnology at IBM's Research Division at the Watson Research Center in Yorktown Heights, NY. He has also been an adjunct professor at Columbia University and the University of Illinois.

Tony Heinz earned his B.Sc. from Stanford University and his Ph.D. degree in physics from the University of California, Berkeley. He is the David M. Rickey Professor in the Departments of Physics and Electrical Engineering at Columbia University, where he has been since 1995. Previous to this, he worked at IBM's Research Division at the Watson Research Center.

The Julius Springer Prize for Applied Physics recognizes researchers who have made an outstanding and innovative contribution to the fields of applied physics. It has been awarded annually since 1998 by the Editors-in-Chief of the Springer journals Applied Physics A – Materials Science & Processing and Applied Physics B – Lasers and Optics.

Source: Springer

Explore further: 'Atomic chicken-wire' is key to faster DNA sequencing

Related Stories

Lightbulb using graphene is to go on sale this year

4 hours ago

The BBC reported on Saturday that a graphene bulb is set for shops, to go on sale this year. UK developers said their graphene bulb will be the first commercially viable consumer product using the super- ...

Yet more opportunities for organic semiconductors

2 hours ago

From 'Radio frequency identification' (RFID) tags to OLED displays and photovoltaic cells, organic semiconductors' high potential is widely recognised. A Marie Curie project has set out to bring potential innovation to the ...

MESSENGER completes 4,000th orbit of Mercury

1 hour ago

On March 25, the MESSENGER spacecraft completed its 4,000th orbit of Mercury, and the lowest point in its orbit continues to move closer to the planet than ever before. The orbital phase of the MESSENGER ...

BitWhisper turns up heat on air-gap security

Mar 24, 2015

Ben Gurion University reported Monday that researcher Mordechai Guri, assisted by Matan Munitz and guided by Prof. Yuval Elovici, uncovered a way to breach air-gapped systems—that's quite something considering ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Recommended for you

'Atomic chicken-wire' is key to faster DNA sequencing

55 minutes ago

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

Chemists make new silicon-based nanomaterials

Mar 26, 2015

Chemists from Brown University have found a way to make new 2-D, graphene-like semiconducting nanomaterials using an old standby of the semiconductor world: silicon.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.