Noble metal nanoparticles deposit on the mycelium of growing fungi--an approach to new catalytic systems?

Sep 18, 2008

(PhysOrg.com) -- When fungi, such as penicillium, grow, they form a thread-like network, the mycelium. If the fungus is grown in a medium containing nanoscopic particles of a noble metal, the resulting mycelium is coated with the nanoparticles. As researchers from the Technical University in Dresden and the Max Planck Institute for the Chemical Physics of Solid Materials in Dresden (Germany) report in the journal Angewandte Chemie, such hybrids could be an interesting new approach for the production of catalytic systems.

The team, led by Alexander Eychmüller and Karl-Heinz Pée, cultivated various types of fungus in media with finely divided (colloidal) nanoparticles of noble metals. In the presence of the tiny gold, platinum, or palladium particles, the fungi grew with no appreciable impairment.

Silver particles, which are toxic to microorganisms, were also tolerated by one variety of fungus. The nanoparticles are deposited on the surface of the growing mycelium—without any special modification beforehand. Thus hybrid systems made of fungi and noble metals are formed: tubular hyphae covered in multiple layers of individual nanoparticles.

The optical properties of nanoscopic particles depend on their size. The researchers determined that the optical properties of their deposited particles differ only slightly from those of the nanoparticles in solution. Fungal threads with a 0.2µm gold covering thus appear reddish brown, like a solution of such gold nanoparticles. This is evidence that the nanoparticles have not aggregated to form larger units.

Because the particles remain separate, the mycelium-bound noble metal nanoparticles should also retain their special catalytic activities. The researchers were thus able to determine that a platinum–fungus hybrid catalyzes the redox reaction of hexacyanoferrate and thiosulfate in aqueous solution. The “enobled” fungal mycelium offers a system easy to separate from the solution after the reaction and a highly specific surface—important for a catalyst.

Citation: Alexander Eychmüller, Fungal Templates for Noble-Metal Nanoparticles and Their Application in Catalysis, Angewandte Chemie International Edition 2008, 47, No. 41, 7876–7879, doi: 10.1002/anie.200801802

Provided by Wiley

Explore further: Researchers discover new method to convert CO2 to a valuable organic compound

add to favorites email to friend print save as pdf

Related Stories

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

Self-assembly of gold nanoparticles into small clusters

Aug 04, 2014

Researchers at HZB in cooperation with Humboldt-Universitaet zu Berlin have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the ...

Skin with high rust protection factor

Jun 04, 2014

In industrialized countries, corrosion guzzles up to 4 percent of economic performance annually. Substances that protect metals effectively from its ravages are often damaging to the environment or have other ...

Recommended for you

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Dr_Righteous
not rated yet Sep 18, 2008
Hey! I might make a profit now from my Tinea Pedis infection.
wsbriggs
not rated yet Sep 18, 2008
Hey! I might make a profit now from my Tinea Pedis infection.


Only if it's gold coated ;-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.