Oil seed rape grown for biofuel can help clean up toxic soils

Sep 09, 2008

Oil seed rape grown for biofuel in Ireland could help clean up contaminated soils, scientists heard today at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

Using plants to help clean up heavily polluted soils has been successfully tested for many years and shown to be a cheap and environmentally friendly way to clear heavy metals such as arsenic, copper, zinc and chromium from contaminated land. The main problem with the method has been the amount of time it takes to grow successive crops of plants to clean up an area. Now scientists may have come up with a solution by combining heavy metal tolerant bacteria with plants used to make biofuels such as oil seed rape.

"We discovered that inoculating the plants with metal resistant bacteria provided them with sufficient protection that their seeds germinated better and their growth was enhanced. The plant leaves accumulate the metals, the bacteria deal with the contamination, and the plants seem to benefit from some of their activity," says Olivia Odhiambo from the Institute of Technology, Carlow, Ireland.

Oilseed rape is a member of the Brassica family, which also includes cabbages and Brussels sprouts. It is well suited to Irish growing conditions and is already widely grown by farmers for biodiesel production.

"As some of the bacterial strains we tested are showing enhanced growth properties in the crop, this also means greater plant production and more biodiesel," says Olivia Odhiambo. "This is good news for owners of land that cannot currently be used for food plants due to heavy metal contamination. However, this technology could also have much wider implications in improving biofuel crop production nationally and internationally by simply helping farmers grow more fuel per hectare."

The scientists have looked at two types of metal tolerant bacteria which colonise the leaves of the oil seed rape plants and one metal tolerant type that lives in the roots of other brassicas and found that all three were successful in promoting the plant growth, although they did show different tolerances to different heavy metals. The Carlow team now hopes to extend their study to include other commercial biofuel plants and different strains of metal resistant bacteria.

Source: Society for General Microbiology

Explore further: New solutions needed to recycle fracking water

add to favorites email to friend print save as pdf

Related Stories

NASA sees a weaker Tropical Storm Marie

40 minutes ago

When NOAA's GOES-West satellite captured an image of what is now Tropical Storm Marie, weakened from hurricane status on August 28, the strongest thunderstorms were located in the southern quadrant of the ...

New tool aids stem cell engineering for medical research

1 hour ago

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

Computer games give a boost to English

1 hour ago

If you want to make a mark in the world of computer games you had better have a good English vocabulary. It has now also been scientifically proven that someone who is good at computer games has a larger ...

Recommended for you

New solutions needed to recycle fracking water

9 hours ago

Rice University scientists have produced a detailed analysis of water produced by hydraulic fracturing (aka fracking) of three gas reservoirs and suggested environmentally friendly remedies are needed to ...

Feds allows logging after huge California wildfire

20 hours ago

The U.S. Forest Service has decided to allow logging on nearly 52 square miles of the Sierra Nevada burned last year in a massive California wildfire, a move contested by environmentalists.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NOM
not rated yet Sep 09, 2008
arsenic 33, copper 29, zinc 30 and chromium 24 are hardly heavy metals.

... and so now you have arsenic laced plant leaves, now what do you do with them?