Physicists harness effects of disorder in magnetic sensors

Sep 09, 2008
University of Chicago physicist Thomas Rosenbaum, with the helium dilution refrigerator in his laboratory, where he observes the quantum behavior of materials chilled to temperatures approaching absolute zero. (Photo: Dan Dry)

(PhysOrg.com) -- University of Chicago scientists have discovered how to make magnetic sensors capable of operating at the high temperatures that ceramic engines in cars and aircraft of the future will require for higher operating efficiency than today's internal combustion technology.

The key to fabricating the sensors involves slightly diluting samples of a well-known semiconductor material, called indium antimonide, which is valued for its purity. Chicago's Thomas Rosenbaum and associate Jingshi Hu, now of the Massachusetts Institute of Technology, have published their formula in the September issue of the journal Nature Materials.

Most magnetic sensors operate by detecting how a magnetic field alters the path of an electron. Conventional sensors lose this capability when subjected to temperatures reaching hundreds of degrees. Not so in the indium antimonide magnetosensors that Rosenbaum and Hu developed with support from the U.S. Department of Energy.

"This sensor would be able to function in those sorts of temperatures without any degradation," said Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics.

Rosenbaum's research typically focuses on the properties of materials observed at the atomic level when subjected to temperatures near absolute zero (minus-460 degrees Fahrenheit). More than a decade ago, he led a team of scientists in experiments involving silver selenide and silver telluride, two materials that exhibited no magnetic response at low temperatures. But when the team introduced a tiny amount of silver (one part in 10,000) to the materials, their magnetic response skyrocketed.

In silver selenide and silver telluride, the magnetic response disappears at room temperature, which limits their technological applications. But Rosenbaum and Hu now have used two methods to recreate the effect at much higher temperatures in indium antimonide. Disordering the material—simply grinding it up and fusing it with heat—produces the effect. So does introducing impurities of just a few parts per million.

"What's nice about it is that, first, it's an unexpected phenomenon; and second, it's a very useful one," said University of Cambridge physicist Peter Littlewood. "Normally, in order to make large effects, you have to have pure samples."

Before Rosenbaum and Hu's latest experiments, two theories dueled to explain the effect. In 2003, Littlewood and Meera Paris, now a postdoctoral fellow at the Princeton Center for Theoretical Physics, explained the effect using classical physics, the laws of nature that govern physics above the atomic scale. Nobel laureate Alexei Abrikosov of Argonne National Laboratory devised an explanation based on quantum physics, the dominant physics at ultrasmall scales.

"We've shown that both theories work, just in different regimes," Rosenbaum said.

Littlewood lauded the sequence of events as an example of how science ought to work. "There's a discovery of a result. There's a theory about it. Further experiments are done to test the theory. They work and that provokes another idea, and you bounce to and fro," Littlewood said. "That's how we like to describe science progressing. One is rarely lucky enough to do that over a long period."

Provided by University of Chicago

Explore further: Neutrino trident production may offer powerful probe of new physics

add to favorites email to friend print save as pdf

Related Stories

New magnetic tuning method enhances data storage

Feb 09, 2010

Researchers in Chicago and London have developed a method for controlling the properties of magnets that could be used to improve the storage capacity of next-generation computer hard drives.

Scientist explore future of high-energy physics

Feb 09, 2010

In a 1954 speech to the American Physical Society, the University of Chicago's Enrico Fermi fancifully envisioned a particle accelerator that encircled the globe. Such would be the ultimate theoretical outcome, ...

Recommended for you

And so they beat on, flagella against the cantilever

8 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

11 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

13 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

dconine
not rated yet Sep 13, 2008
Too bad we can't get this kind of cooperation on cold fusion anomalies......