Future nanoelectronics may face obstacles

Sep 09, 2008

(PhysOrg.com) -- Combining ordinary electronics with light has been a potential way to create minimal computer circuits with super fast information transfer. Researchers at Umeå University in Sweden and the University of Maryland in the U.S. are now showing that there is a limit. When the size of the components approaches the nanometer level, all information will disappear before it has time to be transferred.

“Our findings throw a monkey wrench in the machinery of future nanoelectronics. At the same time, it’s a fascinating issue to address just how we might be able to prevent the information from being lost,” says Mattias Marklund, professor of theoretical physics at Umeå University in Sweden.

The electronics we know in our computers today is, as the name suggests, based on the transfer of information with the help of electrons. Using electrons has allowed us to shrink the size of computer circuits without losing efficacy. At the same time, communication with the help of electrons represents a rather slow means of transmission.

To alleviate this problem, light can be used instead of electrons. This is the basis of so-called photonic components. While the transfer speed in photonics is extremely high, the size of the components cannot be shrunk to the same level as ‘ordinary’ electronics.

For a number of years, so-called plasmonic components have proven to be a possible way around the dilemma of electronics and photonics. By combining photonics and electronics, scientists have shown that information can be transferred with the help of so-called plasmons. Plasmons are surface waves, like waves in the ocean, but here consisting of electrons, which can spread at extremely high speeds in metals.

The findings now being presented by the Swedish-American research team show that difficulties arise when the size of such components is reduced to the nanometer level. At that point it turns out that the dual nature of electrons makes itself felt: the electrons no longer act like particles but rather have a diffuse character, with their location and movement no longer being clearly defined. This elusive personality leads to the energy of the plasmon being dissipated and lost in the transfer of information. For nanocomponents, this consequence is devastating, entailing the loss of all information before it can be transferred.

“The effects we have discovered cannot be fully avoided, but the behavior of the plasmons might nevertheless be controlled by meticulous component design that takes into consideration the quantum nature of the nanoscale. It’s our hope that continued research will provide a solution to this problem,” says Mattias Marklund.

Citation: The findings are presented in the September issue of the journal Europhysics Letters. New quantum limits in plasmonic devices; M. Marklund, G. Brodin, L. Stenflo and C. S. Liu. See also arxiv.org/pdf/0712.3145 .

Provided by Swedish Research Council

Explore further: Engineers discover new method to determine surface properties at the nanoscale

add to favorites email to friend print save as pdf

Related Stories

Scientists light the way for future electronic devices

Nov 17, 2014

Researchers from the Optoelectronics Research Centre (ORC) at the University of Southampton have demonstrated how glass can be manipulated to create electronic devices that will be smaller, faster and consume ...

Engineers efficiently 'mix' light at the nanoscale

Nov 13, 2014

The race to make computer components smaller and faster and use less power is pushing the limits of the properties of electrons in a material. Photonic systems could eventually replace electronic ones, but ...

Atomic timekeeping, on the go

Nov 12, 2014

What time is it? The answer, no matter what your initial reference may be—a wristwatch, a smartphone, or an alarm clock—will always trace back to the atomic clock.

Recommended for you

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

Thin film produces new chemistry in 'nanoreactor'

Nov 19, 2014

Physicists of the University of Groningen and the FOM Foundation, led by professor Beatriz Noheda, have discovered a new manganese compound that is produced by tension in the crystal structure of terbium manganese oxide. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.