Future nanoelectronics may face obstacles

Sep 09, 2008

(PhysOrg.com) -- Combining ordinary electronics with light has been a potential way to create minimal computer circuits with super fast information transfer. Researchers at Umeå University in Sweden and the University of Maryland in the U.S. are now showing that there is a limit. When the size of the components approaches the nanometer level, all information will disappear before it has time to be transferred.

“Our findings throw a monkey wrench in the machinery of future nanoelectronics. At the same time, it’s a fascinating issue to address just how we might be able to prevent the information from being lost,” says Mattias Marklund, professor of theoretical physics at Umeå University in Sweden.

The electronics we know in our computers today is, as the name suggests, based on the transfer of information with the help of electrons. Using electrons has allowed us to shrink the size of computer circuits without losing efficacy. At the same time, communication with the help of electrons represents a rather slow means of transmission.

To alleviate this problem, light can be used instead of electrons. This is the basis of so-called photonic components. While the transfer speed in photonics is extremely high, the size of the components cannot be shrunk to the same level as ‘ordinary’ electronics.

For a number of years, so-called plasmonic components have proven to be a possible way around the dilemma of electronics and photonics. By combining photonics and electronics, scientists have shown that information can be transferred with the help of so-called plasmons. Plasmons are surface waves, like waves in the ocean, but here consisting of electrons, which can spread at extremely high speeds in metals.

The findings now being presented by the Swedish-American research team show that difficulties arise when the size of such components is reduced to the nanometer level. At that point it turns out that the dual nature of electrons makes itself felt: the electrons no longer act like particles but rather have a diffuse character, with their location and movement no longer being clearly defined. This elusive personality leads to the energy of the plasmon being dissipated and lost in the transfer of information. For nanocomponents, this consequence is devastating, entailing the loss of all information before it can be transferred.

“The effects we have discovered cannot be fully avoided, but the behavior of the plasmons might nevertheless be controlled by meticulous component design that takes into consideration the quantum nature of the nanoscale. It’s our hope that continued research will provide a solution to this problem,” says Mattias Marklund.

Citation: The findings are presented in the September issue of the journal Europhysics Letters. New quantum limits in plasmonic devices; M. Marklund, G. Brodin, L. Stenflo and C. S. Liu. See also arxiv.org/pdf/0712.3145 .

Provided by Swedish Research Council

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

add to favorites email to friend print save as pdf

Related Stories

Invisibility cloaks closer thanks to 'digital metamaterials'

Sep 15, 2014

The concept of "digital metamaterials" – a simple way of designing metamaterials with bizarre optical properties that could hasten the development of devices such as invisibility cloaks and superlenses – is reported in a paper published today in Nature ...

Loudspeakers in jet engines

Sep 05, 2014

Unless one is attending an aeronautics convention or going on a trip, noise associated with aircraft engines is rarely tolerable. Different means of significantly reducing that noise are being tested by EPFL's Electromagnetics ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0