A new 'Pyrex' nanoparticle

Sep 07, 2008
Borosilicate glass nanoparticles. Credit: Martin Gijs, EPFL

Researchers in Switzerland have developed a new method to fabricate borosilicate glass nanoparticles. Used in microfluidic systems, these "Pyrex"-like nanoparticles are more stable when subjected to temperature fluctuations and harsh chemical environments than currently used nanoparticles made of polymers or silica glass. Their introduction could extend the range of potential nanoparticle applications in biomedical, optical and electronic fields.

Thanks to their large surface-to-volume ratio, nanoparticles have generated wide interest as potential transporters of antibodies, drugs, or chemicals for use in diagnostic tests, targeted drug therapy, or for catalyzing chemical reactions.

Unfortunately, these applications are limited because nanoparticles disintegrate or bunch together when exposed to elevated temperatures, certain chemicals, or even de-ionized water. Using borosilicate glass (the original "Pyrex") instead of silica glass or polymers would overcome these limitations, but fabrication has been impossible to date due to the instability of the boron oxide precursor materials.

In this week's advance online issue of Nature Nanotechnology, a group of EPFL researchers, led by Professor Martin Gijs, reports on a new procedure to fabricate and characterize borosilicate glass nanoparticles. In addition to biomedical applications, the new nanoparticles could also have applications in the production of photonic bandgap devices with high optical contrast, contrast agents for ultrasonic microscopy or chemical filtration membranes.

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: Research aims to improve rechargeable batteries by focusing on graphene oxide paper

add to favorites email to friend print save as pdf

Related Stories

Chemists fabricate novel rewritable paper

Dec 02, 2014

First developed in China in about the year A.D. 150, paper has many uses, the most common being for writing and printing upon. Indeed, the development and spread of civilization owes much to paper's use as ...

What exactly is Google's 'cancer nanodetector'?

Nov 11, 2014

Last week, US tech giants Google made a splash in the media, announcing plans to develop new 'disease-detecting magnetic nanoparticles'. This was almost universally welcomed – after all, trying to detect ...

Researchers develop new chip for testing medicines

Oct 27, 2014

University of Twente doctoral degree candidate Verena Stimberg has developed a chip that can improve research into diseases, medicines and the possible toxicity of nanoparticles. The chip contains a man-made ...

Nanoparticles break the symmetry of light

Oct 06, 2014

How can a beam of light tell the difference between left and right? At the Vienna University of Technology (TU Wien) tiny particles have been coupled to a glass fibre. The particles emit light into the fibre ...

Novel approach to magnetic measurements atom-by-atom

Oct 01, 2014

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.