Crystals improve understanding of volcanic eruption triggers

Aug 28, 2008
Scientists have studied crystals from the Nea Kameni volcano in Santorini, Greece, to learn more about the timescale of volcanic eruptions Credit: Durham University

Scientists have exploited crystals from lavas to unravel the records of volcanic eruptions. The team, from Durham University and the University of Leeds, studied crystal formation from a volcano, in Santorini, in Greece, to calculate the timescale between the trigger of volcanic activity and the volcano's eruption.

They say the technique can be applied to other volcanoes – such as Vesuvius, near Naples, in Italy – and will help inform the decisions of civil defence agencies.

Worldwide, it is estimated that between 50 and 70 volcanoes erupt each year, but due to the long gaps between eruptions at most volcanoes it is hard to understand how any individual volcano behaves. This work allows scientists to better understand this behaviour.

The research, funded by the Natural Environment Research Council (NERC), is published this week in the prestigious scientific journal Science.

The scientists looked at crystals from the 1925-28 eruption of Nea Kameni, in Santorini.

Lead author Dr Victoria Martin, of Durham University, showed that the crystal rims reacted with molten rock, or magma, as it moved into the volcano's shallow chamber prior to eruption. This process is thought to be associated with shallow level earthquake activity, as shown by modern volcano monitoring.

By studying the area between the crystal core and the rim the team then worked out how long the rims had existed – revealing how long the magma was in the shallow chamber before it erupted.

The crystals showed the 1925-28 eruption at Nea Kameni took place three to ten weeks after the magma entered the shallow system.

As magma movement typically causes seismic activity, if any future seismic or inflation activity at Nea Kameni can be linked to magma recharge of the volcano, the scientists predict an eruption could follow within a similar timescale.

They hope this method can be applied to other volcanoes, allowing the pre-eruption behaviour to be better understood - and understanding of volcanoes to be extended back further in time.

Co-author Dr Dan Morgan, from the School of Earth and Environment, at the University of Leeds, said: "We hope to develop these techniques further and apply them to more volcanoes worldwide.

"Potentially, these techniques could extend our knowledge of volcanic recharge considerably, as they can be applied to material erupted before volcanic monitoring was commonplace."

Professor Jon Davidson, Chair of Earth Sciences at Durham University, said: "We hope that what we find in the crystals in terms of timescales can be linked with phenomena such as earthquakes

"If we can relate the timescales we measure to such events we may be able to say when we could expect a volcano to erupt.

"This is an exciting new method that will help us understand the timescales of fundamental volcanic processes driving eruptions."

Source: Durham University

Explore further: A 3-D view of the Greenland Ice Sheet opens window on ice history

add to favorites email to friend print save as pdf

Related Stories

Has global interdependence made the US vulnerable?

Dec 02, 2014

Risk is everywhere. There's a risk, for example, that volcanic ash will damage aircraft engines. So when a volcano erupted in Iceland in April 2010, concerns about the plume of volcanic ash disrupted air ...

Recommended for you

Geologists solve mystery of Tibetan mountains

Jan 23, 2015

In the most comprehensive study of its kind, University of Kansas geologists have unraveled one of the geologic mysteries of Tibet. The research, recently published online in Nature Geoscience, shows that i ...

Image: Greenland's Leidy Glacier

Jan 23, 2015

Located in the northwest corner of Greenland, Leidy Glacier is fed by ice from the Academy Glacier (upstream and inland). As Leidy approaches the sea, it is diverted around the tip of an island that separates ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.