Special horseshoes measure acceleration in horses

Jul 07, 2008

The most frequent injuries that horses suffer are derived from pressure exerted by riders, and knowing which forces are involved when horses move can prove highly informative when considering treatment for such injuries.

A team of scientists from Wageningen University, led by Professor Johan van Leeuwen, has carried out studies both into the advantages of different rider techniques in reducing injury risk, and into the benefits of a method of equine rehabilitation.

By using computer modelling and specialist horseshoes to measure acceleration, these investigations suggest that aqua-training rehabilitation is beneficial due to lower impact accelerations. However, rising trot may not be as advantageous as previously thought. Results will be presented on Monday 7th July at the Society for Experimental Biology's Annual Meeting in Marseille.

Rehabilitation after equine joint and muscle injuries, including those of the back, shoulders and legs, now often involves 'aquatraining', whereby horses move in water-filled treadmills. Due to buoyancy, this treatment is currently thought to reduce weight-bearing forces, which can otherwise have detrimental effects on joints, but to date there has been a virtual absence of studies into the magnitude of these benefits.

Professor van Leeuwen's team has used special horseshoes to measure accelerations of horses undergoing aquatraining, as well as walking normally, which provide a good indication of the impact forces involved.

"Our results, based on data from seven horses, show the accelerations are significantly lower during 'aquatic walking'," he asserts. "We will be carrying out further experiments to confirm these results, but at this stage, it appears that aquatraining may indeed be beneficial for rehabilitation after joint injury."

Professor van Leeuwen and his colleagues have also used specialised force gauges to measure the strain placed on the backs of horses through the saddle and stirrups. These measurements have been combined with the output of computer models to provide insight into the mechanisms that a rider can use to respond to the movements of a horse, and to prevent injury.

"We have given particular attention to the comparison of sitting and rising trot, as it is broadly accepted in the equestrian world that rising trot imposes less loading on the back of the horse," Professor van Leeuwen explains. "However, our results have not been able to confirm the belief that rising trot is mechanically less demanding for the horse. Looking at back extension, which is most often related to back injuries, we found that the extension of the back is similar in rising and sitting trot."

Source: Society for Experimental Biology

Explore further: Study: Alcatraz inmates could have survived escape

add to favorites email to friend print save as pdf

Related Stories

Riders take load off horses

May 01, 2013

Horses experience back pain so riders do their best to minimise the loads exerted on horses' backs, but how much of a difference do the different trotting techniques make to the loads horses experience? Patricia de Cocq from ...

Cybercriminals target phones, Android 'most exposed'

Feb 29, 2012

Cybercriminals are sneaking a fast-increasing amount of malware into smartphones to steal data or even money, with those running on Google's Android most exposed to security threats, analysts said.

Reinventing the wheel -- naturally

Jun 14, 2010

Humans did not invent the wheel. Nature did. While the evolution from the Neolithic solid stone wheel with a single hole for an axle to the sleek wheels of today's racing bikes can be seen as the result of ...

Recommended for you

Study: Alcatraz inmates could have survived escape

Dec 17, 2014

The three prisoners who escaped from Alcatraz in one of the most famous and elaborate prison breaks in U.S. history could have survived and made it to land, scientists concluded in a recent study.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.