Developing better nano-electronics by understanding nonadiabatic effects

Jun 17, 2008 By Miranda Marquit feature

“Basically,” Michele Lazzeri tells PhysOrg.com, “the Born-Oppenheimer adiabatic approximation tells us how atoms are vibrating.” This adiabatic effect is used to describe phonons, which are modes of vibration that have been quantized. “It’s basic textbook stuff in solid state physics,” Lazzeri continues, “but sometimes the Born-Oppenheimer adiabatic approximation fails.”

This failure is known as nonadiabatic effects. However, even though the existence of such has been speculated about since the 1960s, measuring – and understanding – how nonadiabatic effects affect solids has been difficult, especially in terms of distinguishing them in new materials such as graphene and carbon nanotubes. (It is important to note that graphene and nanotubes hold a great deal of interest in nanotechnologies, they are considered as potential components for future nano-electronic-devices.)

Lazzeri, along with A. Marco Saitta, Matteo Calandra and Francesco Mauri, all at IMPMC at the University of Paris 6, have created a theoretical framework for explaining nonadiabatic effects, and their differences from adiabatic effects. Their work has been published in Physical Review Letters: “Giant Nonadiabatic Effects in Layer Metals: Raman Spectra of Intercalated Graphite Explained.”

“Our work is really a scientific curiosity,” Lazzeri explains. “Efforts have been made to use Raman spectroscopy to detect and measure these nonadiabatic effects in metals.” Nonadiabatic effects can be used to explain certain properties seen due to Raman scattering, including linewidths and shifts. “It’s really about understanding basic principles in quantum mechanics.”

What prompted the present work was actually work that the University of Paris team had done earlier, looking for nonadiabatic effects in graphene. “It turns out that graphene dependence to phonon frequency on doping, or adding electrons, is due to nonadiabatic effects.” However, the difference between the adiabatic and the nonadiabatic was not very pronounced in graphene, making it difficult to measure. So the Lazzeri and his peers wondered what would happen if they used layered metals that were truly three dimensional, rather than closer to two dimensional, as graphene is.

“We realized that when you have layered material, like the intercalated graphite and the MgB2 [magnesium diboride] used in the experiments we studied, you can do Raman scattering to excite the phonons to where the Born-Oppenheimer approximation fails,” Lazzeri says. This is done, he explains, by probing with a laser direction that is perpendicular to the layers.

“We found that the difference between the adiabatic and the nonadiabatic effects were huge in these cases,” he continues. “The difference is much more spectacular in the graphite than in the graphene we studied before.”

Lazzeri hopes that the information and first principles that the team articulates can be applied going forward to other new materials to be used in future nano-electronic devices. “It does have a technology application,” he insists.

“The study of vibrations is not only interesting from a purely scientific point of view,” he continues. “As a matter of fact, vibrations provide us with one of the most direct access to the properties of matter at the microscopic level.”

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New insights found in black hole collisions

21 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

21 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

ajubabu_01
1 / 5 (2) Jun 18, 2008
Nice Post. Posted this link in www.surfurls.com
Shashank
not rated yet Jul 01, 2008
Can you please make it a bit clear that what basically makes the difference between the properties of a material in adiabatic and non adiabatic state and where can the materials with some positive adiabatic and non adiabatic properties be implied????

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.