Aquatic insect 'family trees' provide clues about sensitivity to pollution

Jun 16, 2008

A North Carolina State University study published online this week in Proceedings of the National Academy of Sciences shows that examining an insect's "family tree" might help predict a "cousin" insect's level of tolerance to pollutants, and therefore could be a reliable way to understand why certain insect species thrive or suffer under specific ecological conditions.

Evaluations of the health and well-being of rivers and streams are frequently tied to the presence – or absence – of resident aquatic insects. But these population evaluations are not designed to explain why certain species may be disappearing from specific places, says Dr. David Buchwalter, an NC State assistant professor of environmental and molecular toxicology and the lead author of the paper.

"Our results are exciting because they open up the possibility of predicting species' tolerance to environmental problems based on their evolutionary histories," Buchwalter says. This predictive power would give scientists a leg up on understanding insect responses to environmental stressors in the more than 6,500 aquatic insect species in North America.

In the study, Buchwalter and colleagues from the University of California, Riverside, and the U.S. Geological Survey examined how 21 species of insects field-collected from streams in North Carolina, California, Colorado and Oregon tolerated cadmium, a trace metal cancerous to humans that is used in batteries and found near hard-rock mining and industrial sites.

By exposing the insects to a gamma emitting isotope of cadmium – a technique that allowed the scientists to gauge metallic concentrations in live insects over time – the researchers measured cadmium intake rates; cadmium elimination rates; whether insects "detoxified" metals using proteins; and whether related insects showed similar resistance or tolerance to cadmium.

The study showed a great deal of variation in how these insects internally process cadmium, including a 65-fold difference in uptake and a 25-fold difference in the rate at which different species eliminated it from their tissues.

For the most part, though, insects in the same family were similar when it came to pollution sensitivity.

The study also showed that species could face a trade-off between being able to protect cells from cadmium and being able to eliminate it from their tissues. "This paper helps explain why, in the same water, different species can carry around very different concentrations of metals," Buchwalter says. "And some species can carry those metal loads better than others."

Source: North Carolina State University

Explore further: Dead floppy drive: Kenya recycles global e-waste

add to favorites email to friend print save as pdf

Related Stories

Health of honey bees adversely impacted by selenium

Oct 03, 2013

Traditionally, honey bee research has focused on environmental stressors such as pesticides, pathogens and diseases. Now a research team led by entomologists at the University of California, Riverside has ...

Selenium impacts honey bee behavior and survival

Apr 25, 2012

(Phys.org) -- Entomologists at the University of California, Riverside have a “proof of concept” that selenium, a nonmetal chemical element, can disrupt the foraging behavior and survival of honey ...

Recommended for you

Dead floppy drive: Kenya recycles global e-waste

21 hours ago

In an industrial area outside Kenya's capital city, workers in hard hats and white masks take shiny new power drills to computer parts. This assembly line is not assembling, though. It is dismantling some ...

New paper calls for more carbon capture and storage research

Aug 22, 2014

Federal efforts to reduce greenhouse gas emissions must involve increased investment in research and development of carbon capture and storage technologies, according to a new paper published by the University of Wyoming's ...

Coal gas boom in China holds climate change risks

Aug 22, 2014

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

User comments : 0