A promising step towards more effective hydrogen storage

Jun 16, 2008

An international research team led by Swedish Professor Rajeev Ahuja, Uppsala University, has demonstrated an atomistic mechanism of hydrogen release in magnesium nanoparticles – a potential hydrogen storage material. The findings have been published in the online edition of Proceedings of the National Academy of Science (PNAS).

It is becoming clear that cars of the future will have to move from using the combination of petrol and a combustion engine in order to combat global warming and potential oil shortages.

One of the prime candidate technologies are fuel cells using hydrogen gas as fuel, chiefly because hydrogen is among the most abundant elements on earth and is able of producing energy through chemical reactions with oxygen in the fuel cells releasing only water - an environmentally benign by-product. Storing hydrogen gas in a compact way is, however, still an unsolved problem.

Much research effort has been directed at absorbing hydrogen in metal powders, forming so-called metal hydrides. Magnesium may absorb up to 7.7 weight per cent of hydrogen, and has commonly been studied for this purpose, especially since fast loading and unloading of hydrogen can be accomplished by adding catalysts like iron and nickel particles.

It has been speculated that the catalysts act as shuttles, helping to transport hydrogen out of the material. With the help of computer simulations of magnesium clusters at the quantum mechanical level, the Uppsala researchers and their colleagues have now been able to show in atomic scale how this happens and why only a small amount of catalysts are necessary to improve the hydrogen release. The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

"We expect the findings to aid further technical improvements of magnesium-based hydrogen storage materials, as well as other related light metal hydrides," says Professor Raajev Ahuja.

Source: Uppsala University

Explore further: Dye-sensitized solar cell absorbs a broad range of visible and infrared wavelengths

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

User comments : 0