Arecibo joins global network to create 6,000-mile telescope

Jun 10, 2008

On May 22, Arecibo Observatory in Puerto Rico joined other telescopes in North America, South America, Europe and Africa in simultaneously observing the same targets, simulating a telescope more than 6,800 miles (almost 11,000 kilometers) in diameter.

The telescopes are all members of the Express Production Real-time e-VLBI Service (EXPReS) project, and May 22 marked a live demonstration of their first four-continent, real-time, electronic Very Long Baseline Interferometry (e-VLBI) observations.

VLBI uses multiple radio telescopes to simultaneously observe the same region of sky -- essentially creating a giant instrument as big as the separation of the dishes. VLBI can generate images of cosmic radio sources with up to 100 times better resolution than images from the best optical telescopes.

The results were immediately transmitted to Belgium, where they were shown as part of the 2008 Trans-European Research and Education Networking Association Conference.

The Arecibo team called the demonstration a major milestone in the telescope's e-VLBI participation, with a data-streaming rate to the central signal processor at the Joint Institute for VLBI in Europe (JIVE) in the Netherlands four times higher than Arecibo had previously achieved.

"These results are very significant for the advance of radio astronomy," said JIVE director Huib Jan van Langevelde. "It shows not only that telescopes of the future can be developed in worldwide collaboration, but that they can also be operated as truly global instruments."

EXPReS, funded by the European Commission, aims to connect up to 16 of the world's most sensitive radio telescopes to the JIVE processor to correlate VLBI data in real time. This replaces the traditional VLBI method of shipping data on disk and provides astronomers with observational data in a matter of hours rather than weeks, allowing them to respond rapidly to transient events with follow-up observations.

Source: Cornell University

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Radio telescopes unravel mystery of nova gamma rays

Oct 08, 2014

Highly-detailed radio-telescope images have pinpointed the locations where a stellar explosion called a nova emitted gamma rays, the most energetic form of electromagnetic waves. The discovery revealed a ...

Radio-astronomers form telescope the size of Earth

Jan 13, 2009

(PhysOrg.com) -- Radio telescopes around the world will join forces this week to carry out a unique observation of three quasars, distant galaxies powered by super-massive black holes at their cores.

Black hole trio holds promise for gravity wave hunt

Jun 25, 2014

The discovery of three closely orbiting supermassive black holes in a galaxy more than four billion light years away could help astronomers in the search for gravitational waves: the 'ripples in spacetime' ...

Global telescope array links successfully with GBT

May 09, 2014

For the first time, the National Science Foundation's Green Bank Telescope (GBT) was successfully linked with a network of millimeter-wavelength telescopes, giving a powerful boost to an observatory known as the Global Millimeter ...

Recommended for you

SDO captures images of two mid-level flares

14 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

21 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.