New research shows how marine organisms help oceans sequester carbon

Jun 09, 2008
New research shows how marine organisms help oceans sequester carbon
Ellery Ingall and Julia Diaz, both of Georgia Tech, rinse particle samples aboard a research vessel.

As the international search for ways to remove carbon dioxide and other greenhouse gases from the environment intensifies, a team of scientists has identified a process by which marine organisms influence the amount of atmospheric carbon the sea absorbs.

Oceanic diatoms—unicellular glassy algae—harvest a key energy-storing molecule containing phosphorus from the dissolved compounds in ocean water. Instead of processing the phosphorus and releasing it back into the environment, the algae collect and store it in a compound known as a polyphosphate, said physicist Ian McNulty of the U.S. Department of Energy's Argonne National Laboratory. McNulty collaborated with researchers from the Skidaway Institute of Oceanography, Georgia, and the Georgia Institute of Technology and the University of South Carolina.

The algae then convert these polyphosphate compounds into microscopic pellets that they store for energy. When these diatoms die, however, the polyphosphate pellets contained in their skeletons sink to sediments at the bottom of the ocean. With time, the polyphosphates are transformed into a mineral phosphate called apatite, thus completing the sequestration of phosphorus from seawater.

"If we can understand how phosphorus uptake, metabolism and sequestration take place within marine organisms, we could uncover information that might give us clues as to how carbon uptake and sequestration take place in the ocean and affect the global carbon balance," McNulty said. "This research is of huge interest to climatologists and bears directly on and the potential to combat global warming."

Phosphorus is one of the principal ingredients of fertilizer as well as many other compounds present in significant quantities in agricultural runoff that winds up in large bodies of water, said oceanographer Jay Brandes of Skidaway, who collaborated with McNulty on the research.

"Oceans are the repositories of everything that washes off of the lands, and phosphorus is an important nutrient for all kinds of life, especially plant life." Brandes said. "The interesting thing about this particular process is that because these diatoms need it to survive, the levels of phosphorus will control the size of the algae population. As the diatoms use up the available phosphorus and turn it into polyphosphates, they will die off in large numbers, altering the phosphorus balance."

In most regions of the ocean, nutrient levels in the water dictate the rate of both phosphorus and carbon sequestration. The removal of carbon from the environment is controlled by the removal of phosphorus and nitrogen, according to Brandes.

During the course of their research, McNulty and his colleagues were surprised to discover that the diatoms created polyphosphates even in waters that contained relatively low concentrations of dissolved phosphorus. The polyphosphates created by the diatoms also proved more durable than anticipated, Brandes said, allowing the researchers to glimpse their entire lifecycle from solutes to apatite.

Much of the research, led by oceanographer Ellery Ingall of Georgia Tech, was performed at Argonne's Advanced Photon Source. The results were published in the May 2 issue of the journal Science.

Source: Argonne National Laboratory

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New filter could advance terahertz data transmission

22 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

23 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.