Researchers develop nanowire 'paper towel' for oil spills

May 30, 2008
Nanowire 'paper towel' for oil spills
MIT has developed a new material for absorbing oil and other organic pollutants. Here the material is used to remove a layer of gasoline (dyed blue) from a vial of water. Image courtesy / Francesco Stellacci, MIT, and Nature Nanotechnology

A mat of nanowires with the touch and feel of paper could be an important new tool in the cleanup of oil and other organic pollutants, MIT researchers and colleagues report in the May 30 online issue of Nature Nanotechnology.

The scientists say they have created a membrane that can absorb up to 20 times its weight in oil, and can be recycled many times for future use. The oil itself can also be recovered. Some 200,000 tons of oil have already been spilled at sea since the start of the decade.

“What we found is that we can make 'paper' from an interwoven mesh of nanowires that is able to selectively absorb hydrophobic liquids-oil-like liquids-from water,” said Francesco Stellacci, an associate professor in the Department of Materials Science and Engineering and leader of the work.

In addition to its environmental applications, the nanowire paper could also impact filtering and the purification of water, said Jing Kong, an assistant professor of electrical engineering in the Department of Electrical Engineering and Computer Science and one of Stellacci's colleagues on the work. She noted that it could also be inexpensive to produce because the nanowires of which it is composed can be fabricated in larger quantities than other nanomaterials.

Stellacci explained that there are other materials that can absorb oils from water, “but their selectivity is not as high as ours.” In other words, conventional materials still absorb some water, making them less efficient at capturing the contaminant.

The new material appears to be completely impervious to water. “Our material can be left in water a month or two, and when you take it out it's still dry,” Stellacci said. “But at the same time, if that water contains some hydrophobic contaminants, they will get absorbed.”

Made of potassium manganese oxide, the nanowires are stable at high temperatures. As a result, oil within a loaded membrane can be removed by heating above the boiling point of oil. The oil evaporates, and can be condensed back into a liquid. The membrane-and oil-can be used again.

Two key properties make the system work. First, the nanowires form a spaghetti-like mat with many tiny pores that make for good capillarity, or the ability to absorb liquids. Second, a water-repelling coating keeps water from penetrating into the membrane. Oil, however, isn't affected, and seeps into the membrane.

The membrane is created by the same general technique as its low-tech cousin, paper. “We make a suspension of nanowires, like a suspension of cellulose [the key component of paper], dry it on a non-sticking plate, and we get pretty much the same results,” Stellacci said.

In a commentary accompanying the Nature Nanotechnology paper, Joerg Lahann of the University of Michigan concluded: “Stellacci and co-workers have provided an example of a nanomaterial that has been rationally designed to address a major environmental challenge.”

Source: Massachusetts Institute of Technology

Explore further: Researchers make magnetic graphene

add to favorites email to friend print save as pdf

Related Stories

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

Recommended for you

Researchers use oxides to flip graphene conductivity

12 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

19 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.