How buckyballs hurt cells

May 27, 2008

A new study into the potential health hazards of the revolutionary nano-sized particles known as ‘buckyballs’ predicts that the molecules are easily absorbed into animal cells, providing a possible explanation for how the molecules could be toxic to humans and other organisms.

Using computer simulations, University of Calgary biochemist Peter Tieleman, post-doctoral fellow Luca Monticelli and colleagues modeled the interaction between carbon-60 molecules and cell membranes and found that the particles are able to enter cells by permeating their membranes without causing mechanical damage. Their results are published in the current Advance Online Publication of Nature Nanotechnology, the world’s leading nanotechnology journal.

“Buckyballs are already being made on a commercial scale for use in coatings and materials but we have not determined their toxicity,” said Tieleman, a Senior Scholar of the Alberta Heritage Foundation for Medical Research who specializes in membrane biophysics and biocomputing. “There are studies showing that they can cross the blood-brain barrier and alter cell functions, which raises a lot of questions about their toxicity and what impact they may have if released into the environment.”

Tieleman’s team used the high-powered computing resources of WestGrid, a partnership between 14 Western Canadian institutions, to run some of the cell behaviour simulations. The resulting model showed that buckyball particles are able to dissolve in cell membranes, pass into cells and re-form particles on the other side where they can cause damage to cells.

Spherical carbon-60 molecules were discovered in 1985, leading to the Nobel Prize in physics for researchers from the University of Sussex and Rice University who named the round, hollow molecules Buckminsterfullerene after renowned American architect Richard Buckminster Fuller, the inventor of the geodesic dome.

Popularly known as buckyballs, carbon-60 molecules form naturally in minute quantities under extreme conditions such as lightning strikes. They can also be produced artificially as spheres or oblong-shaped balls, known as fullerenes, and can be used to produce hollow fibers known as carbon nanotubes. Both substances are considered to be promising materials in the field of nanotechnology because of their incredible strength and heat resistance. Potential applications include the production of industrial materials, drug delivery systems, fuel cells and even cosmetics.

In recent years, much research has focused on the potential health and environmental impacts of buckyballs and carbon nanotubes. Fullerenes have been shown to cause brain damage in fish and inhaling carbon nanotubes results in lung damage similar to that caused by asbestos.

“Buckyballs commonly form into clumps that could easily be inhaled by a person as dust particles,” Tieleman said. “How they enter cells and cause damage is still poorly understood but our model shows a possible mechanism for how this might occur.”

Source: University of Calgary

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

add to favorites email to friend print save as pdf

Related Stories

Signaling molecule crucial to stem cell reprogramming

7 hours ago

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with ...

Risk analysis for a complex world

Nov 18, 2014

Developing adaptable systems for finance and international relations could help reduce the risk of major systemic collapses such as the 2008 financial crisis, according to a new analysis.

How adult fly testes keep from changing into ovaries

Nov 13, 2014

New research in flies shows how cells in adult reproductive organs maintain their sexual identity. The study, publishing online on November 13 in the Cell Press journal Developmental Cell, also identified a mutation that c ...

Recommended for you

Protons fuel graphene prospects

15 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.