Bright sparks make gains towards plastic lasers of the future

May 23, 2008
Bright sparks make gains towards plastic lasers of the future
The researchers hope lasers in CD players may one day use plastic laser diodes

Imperial researchers have come one step closer to finding the 'holy grail' in the field of plastic semiconductors by demonstrating a class of material that could make electrically-driven plastic laser diodes a reality.

Conventional electrically-powered laser diodes used in everyday consumer goods like DVD players are currently based on inorganic semiconductor materials such as gallium arsenide, gallium nitride and related alloys. The term 'semiconductor' describes the material’s ability to pass an electric current, which lies somewhere between that of a metallic conductor and that of an insulator.

In the case of a laser diode, the current comprises positive and negative charges that combine inside the material and produce the initial light required to begin the lasing process. If the initial light can be forced to pass back and forth through the semiconducting material many times, in a way that amplifies its strength on each pass, then after a short time a spectrally narrow, intense and directional laser beam emerges.

The last two decades have seen tremendous developments in new organic-molecule-based semiconductors, including a special class of plastics. Many important devices based on such plastics have successfully been developed, including light emitting diodes for displays and lighting, field effect transistors for electrical circuits, and photodiodes for solar energy conversion and light detection. However, despite over a decade of worldwide research, plastic laser diodes remain the only major device type not yet demonstrated.

One of the main stumbling blocks is that, until now, it was widely considered that plastic semiconductor laser diodes would be impossible to produce because scientists had not found or developed any plastics that could sustain a large enough current whilst also supporting the efficient light emission needed to produce a laser beam.

Now a team of Imperial physicists, publishing their findings in Nature Materials in April, have done just that. The plastics studied, synthesised by the Sumitomo Chemical Company in Japan, are closely related to PFO, an archetype blue-light emitting material. By making subtle changes in the plastic's chemical structure the researchers produced a material that transports charges 200 times better than before, without compromising its ability to efficiently emit light - indeed the generation of laser light was actually improved.

Professor Donal Bradley, lead author of the new study and head of Imperial's Department of Physics said: "This study is a real breakthrough. In the past designing polymers for electronic and optoelectronic devices often involved maximising one key property in a material at a time. When people tried to develop plastic semiconductors for laser diode use, they found that optimising the material's charge transporting properties had a detrimental effect on its ability to efficiently emit light, and vice versa."

"The modifications made to the PFO structure have allowed us to convincingly overcome this perceived incompatibility and they suggest that plastic laser diodes might now be a realistic possibility", added co-author Dr Paul Stavrinou.

Low cost manufacturing and easy integration possibilities are not the only potential advantages of developing lasers based on plastics. Currently available laser diodes do not readily cover the full visible spectrum, which limits display and many spectroscopic applications, and precludes access to the full range of wavelengths supported by the standard plastics used for waveguides and optical fibres.

Professor Bradley, Dr Stavrinou and their colleagues point out that plastic laser diodes could operate across a much more substantial wavelength range spanning the near ultraviolet to the near infrared.

The Imperial College physics team, in conjunction with polymer synthesis teams at the Sumitomo Chemical Company and in collaborating university groups, now plans to explore the generality of their approach to manipulating chemical structure to target specific device requirements. They will also study electrically driven structures, paying particular attention to understanding and managing the additional optical losses that can arise from the presence of conductive electrode layers in close proximity to the light emission material.

Professor Bradley’s Nature Material’s paper can be read in full here: www.nature.com/nmat/journal/v7/n5/full/nmat2165.html

Source: Imperial College London

Explore further: Pseudoparticles travel through photoactive material

Related Stories

Researchers show soft sides with layered fabric 3-D printer

23 hours ago

A team from Disney Research and Carnegie Mellon University have devised a 3-D printer that layers together laser-cut sheets of fabric to form soft, squeezable objects such as bunnies, doll clothing and phone cases. These ...

Glitter cloud may serve as space mirror

Apr 16, 2015

What does glitter have to do with finding stars and planets outside our solar system? Space telescopes may one day make use of glitter-like materials to help take images of new worlds, according to researchers ...

High-precision radar for the steel industry

Mar 02, 2015

Steel is the most important material in vehicle and machinery construction. Large quantities of offcuts and scraps are left over from rolling and milling crude steel into strip steel. New radar from Fraunhofer ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Valentiinro
4 / 5 (1) May 24, 2008
So... Cheap lasers coming in across the spectrum? That sounds pretty nifty.
lengould100
3 / 5 (1) Jun 25, 2008
Should make "fiber-optic last mile" feasible. Can hope anyway.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.