Stanford, tech giants team up to enable software for parallel computers

May 01, 2008

Stanford and many of the biggest companies in computing will announce Friday, May 2, a joint effort to address a major missed opportunity in information technology: the dearth of software that can harness the parallelism of the multiple processors that are being built into virtually every new computer. The Pervasive Parallelism Lab (PPL) pools the efforts of many leading Stanford computer scientists and electrical engineers with support from Sun Microsystems, Advanced Micro Devices, NVIDIA, IBM, Hewlett Packard and Intel.

Until recently, computers with multiple processors were too expensive for all but specialized uses (e.g. supercomputing) where the high performance of parallel processing was deemed essential. As a consequence, few programmers have learned how to design software that exploits parallelism. The problem has caused serious concern among computer scientists that the progress of computing overall could stall.

"Parallel programming is perhaps the largest problem in computer science today and is the major obstacle to the continued scaling of computing performance that has fueled the computing industry, and several related industries, for the last 40 years," says Bill Dally, chair of the Computer Science Department at Stanford.

Dally will participate in the lab's research, which will be directed by Kunle Olukotun, a professor of electrical engineering and computer science who has worked for more than a decade on multicore computer architecture, in which many processors inhabit the same silicon chip.

Another team member and fellow processor architect, Stanford President John Hennessy, said the lab's work is aimed at restoring the progress that society at large has come to expect from information technology.

"This era is going to be about exploiting some sort of explicit parallelism, and if there's a problem that has confounded computer science for a long time, it is exactly that," Hennessy said. "We need to find ways to overcome this problem so that recent advances in computing hardware can continue benefiting the public and the economy."

Olukotun says he hopes that by working directly with industrial supporters, the work of PPL faculty and students will reach the marketplace where it can have an impact. He emphasized that the lab is open, meaning that other companies can still join the effort and none has exclusive intellectual property rights.

The center, with a budget of $6 million over three years, will research and develop a top-to-bottom parallel computing system, stretching from fundamental hardware to new user-friendly programming languages that will allow developers to exploit parallelism automatically. In other words, game programmers who already understand artificial intelligence, graphics rendering, and physics would be able to implement their algorithms in accessible "domain-specific" languages. At deeper, more fundamental levels of software—"under the hood," so to speak—the system would do all the work for them to optimize their code for parallel processing.

To enable the research, the team's hardware experts will develop a novel testbed called FARM, for Flexible Architecture Research Machine. The system, which Olukotun said will be ready by the end of the summer, will combine versatility with performance by blending reprogrammable chips with conventional processors.

Olukotun says he hopes the effort will pave the way for programmers to easily create powerful new software for applications such as Artificial Intelligence and robotics, business data analysis, and virtual worlds and gaming. Among the PPL faculty are experts in each of these areas, including Pat Hanrahan, a professor of computer science and electrical engineering whose graphics rendering expertise has earned him two Academy Awards.

"We believe in driving applications," says Hanrahan.. "Among the most interesting are immersive, richly graphical, virtual worlds, both because of the unique experiences for users as well as the challenges in building such demanding parallel applications."

Research in the PPL also will be able to make use of parallelism technologies that Stanford has already developed, as part of years of research on the subject. These include not only Olukotun's work on multicore chips but also his collaboration with computer science and electrical engineering Assistant Professor Christos Kozyrakis to develop a more efficient way for processors to share memory, called "transactional memory." Dally, meanwhile, has developed new ways for the flow, or "streaming," of software instructions from a compiler to parallel processors to work much more efficiently than in conventional supercomputers.

"We have a history here of trying to close this gap between parallel hardware and software," Olukotun says. "It's not enough just to put a bunch of cores on a chip. You also have to make the job of translating software to use that parallelism easier."

Stanford, however, is not the only university trying to solve the problem. The announcement of the PPL comes less than two months after the University of California at Berkeley and the University of Illinois at Urbana-Champaign each received multimillion-dollar grants from Microsoft and Intel to address the issue.

"Clearly this problem is big enough and important enough that we need more people looking at it," Olukotun said. "By having more and different approaches to the problem, we're more likely to find a solution."

Source: Stanford University

Explore further: Computer scientists can predict the price of Bitcoin

add to favorites email to friend print save as pdf

Related Stories

They like to watch, yes, but that's just the beginning

Oct 14, 2014

Kai Huotari was a visiting scholar at Berkeley's School of Information in the spring of 2011, when the Fox TV series Glee—a weekly musical drama about the fictional McKinley High School glee club—took ...

Optimizing how wind turbines work with machine learning

Oct 14, 2014

Machine learning helps make complex systems more efficient. Regardless of whether the systems in question are steel mills or gas turbines, they can learn from collected data, detect regular patterns, and ...

A shiny, new graph query system

Oct 09, 2014

As computing tools and expertise used in conducting scientific research continue to expand, so have the enormity and diversity of the data being collected. Developed at Pacific Northwest National Laboratory, ...

Recommended for you

Tablets, cars drive AT&T wireless gains—not phones

4 hours ago

AT&T says it gained 2 million wireless subscribers in the latest quarter, but most were from non-phone services such as tablets and Internet-connected cars. The company is facing pricing pressure from smaller rivals T-Mobile ...

Twitter looks to weave into more mobile apps

5 hours ago

Twitter on Wednesday set out to weave itself into mobile applications with a free "Fabric" platform to help developers build better programs and make more money.

Blink, point, solve an equation: Introducing PhotoMath

6 hours ago

"Ma, can I go now? My phone did my homework." PhotoMath, from the software development company MicroBlink, will make the student's phone do math homework. Just point the camera towards the mathematical expression, ...

Google unveils app for managing Gmail inboxes

6 hours ago

Google is introducing an application designed to make it easier for its Gmail users to find and manage important information that can often become buried in their inboxes.

User comments : 0