Stanford, tech giants team up to enable software for parallel computers

May 01, 2008

Stanford and many of the biggest companies in computing will announce Friday, May 2, a joint effort to address a major missed opportunity in information technology: the dearth of software that can harness the parallelism of the multiple processors that are being built into virtually every new computer. The Pervasive Parallelism Lab (PPL) pools the efforts of many leading Stanford computer scientists and electrical engineers with support from Sun Microsystems, Advanced Micro Devices, NVIDIA, IBM, Hewlett Packard and Intel.

Until recently, computers with multiple processors were too expensive for all but specialized uses (e.g. supercomputing) where the high performance of parallel processing was deemed essential. As a consequence, few programmers have learned how to design software that exploits parallelism. The problem has caused serious concern among computer scientists that the progress of computing overall could stall.

"Parallel programming is perhaps the largest problem in computer science today and is the major obstacle to the continued scaling of computing performance that has fueled the computing industry, and several related industries, for the last 40 years," says Bill Dally, chair of the Computer Science Department at Stanford.

Dally will participate in the lab's research, which will be directed by Kunle Olukotun, a professor of electrical engineering and computer science who has worked for more than a decade on multicore computer architecture, in which many processors inhabit the same silicon chip.

Another team member and fellow processor architect, Stanford President John Hennessy, said the lab's work is aimed at restoring the progress that society at large has come to expect from information technology.

"This era is going to be about exploiting some sort of explicit parallelism, and if there's a problem that has confounded computer science for a long time, it is exactly that," Hennessy said. "We need to find ways to overcome this problem so that recent advances in computing hardware can continue benefiting the public and the economy."

Olukotun says he hopes that by working directly with industrial supporters, the work of PPL faculty and students will reach the marketplace where it can have an impact. He emphasized that the lab is open, meaning that other companies can still join the effort and none has exclusive intellectual property rights.

The center, with a budget of $6 million over three years, will research and develop a top-to-bottom parallel computing system, stretching from fundamental hardware to new user-friendly programming languages that will allow developers to exploit parallelism automatically. In other words, game programmers who already understand artificial intelligence, graphics rendering, and physics would be able to implement their algorithms in accessible "domain-specific" languages. At deeper, more fundamental levels of software—"under the hood," so to speak—the system would do all the work for them to optimize their code for parallel processing.

To enable the research, the team's hardware experts will develop a novel testbed called FARM, for Flexible Architecture Research Machine. The system, which Olukotun said will be ready by the end of the summer, will combine versatility with performance by blending reprogrammable chips with conventional processors.

Olukotun says he hopes the effort will pave the way for programmers to easily create powerful new software for applications such as Artificial Intelligence and robotics, business data analysis, and virtual worlds and gaming. Among the PPL faculty are experts in each of these areas, including Pat Hanrahan, a professor of computer science and electrical engineering whose graphics rendering expertise has earned him two Academy Awards.

"We believe in driving applications," says Hanrahan.. "Among the most interesting are immersive, richly graphical, virtual worlds, both because of the unique experiences for users as well as the challenges in building such demanding parallel applications."

Research in the PPL also will be able to make use of parallelism technologies that Stanford has already developed, as part of years of research on the subject. These include not only Olukotun's work on multicore chips but also his collaboration with computer science and electrical engineering Assistant Professor Christos Kozyrakis to develop a more efficient way for processors to share memory, called "transactional memory." Dally, meanwhile, has developed new ways for the flow, or "streaming," of software instructions from a compiler to parallel processors to work much more efficiently than in conventional supercomputers.

"We have a history here of trying to close this gap between parallel hardware and software," Olukotun says. "It's not enough just to put a bunch of cores on a chip. You also have to make the job of translating software to use that parallelism easier."

Stanford, however, is not the only university trying to solve the problem. The announcement of the PPL comes less than two months after the University of California at Berkeley and the University of Illinois at Urbana-Champaign each received multimillion-dollar grants from Microsoft and Intel to address the issue.

"Clearly this problem is big enough and important enough that we need more people looking at it," Olukotun said. "By having more and different approaches to the problem, we're more likely to find a solution."

Source: Stanford University

Explore further: Ant colonies help evacuees in disaster zones

add to favorites email to friend print save as pdf

Related Stories

Earthquake simulation tops one quadrillion flops

Apr 15, 2014

A team of computer scientists, mathematicians and geophysicists at Technische Universitaet Muenchen (TUM) and Ludwig-Maximillians Universitaet Muenchen (LMU) have – with the support of the Leibniz Supercomputing ...

The science of anatomy is undergoing a revival

Apr 10, 2014

Only two decades ago, when I was starting my PhD studies at the University of California in Berkeley, there was talk about the death of anatomy as a research subject. That hasn't happened. Instead the science ...

Appearance of night-shining clouds has increased

Apr 10, 2014

(Phys.org) —First spotted in 1885, silvery blue clouds sometimes hover in the night sky near the poles, appearing to give off their own glowing light. Known as noctilucent clouds, this phenomenon began ...

Making elastic cloud computing a reality

Apr 08, 2014

(Phys.org) —University of New South Wales researchers are using artificial intelligence to create a computer network capable of regulating its own consumption of public cloud services.

Big, fast, weird data

Apr 08, 2014

The "Big Data" research that continues to dominate IT agendas has traditionally focused on making sense of the growing volumes of computer data. Yet in recent years, the volume question has given way to the other V's of Big ...

Recommended for you

Quantenna promises 10-gigabit Wi-Fi by next year

4 hours ago

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

New US-Spanish firm says targets rich mobile ad market

5 hours ago

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...

Environmentally compatible organic solar cells

5 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Twitter rules out Turkey office amid tax row

5 hours ago

Social networking company Twitter on Wednesday rejected demands from the Turkish government to open an office there, following accusations of tax evasion and a two-week ban on the service.

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...