Searching the heavens -- GLAST

May 01, 2008

A new space mission, due to launch this month, is going to shed light on some of the most extreme astrophysical processes in nature - including pulsars, remnants of supernovae, and supermassive black holes. It could even help us comprehend the origin and distribution of dark matter, write three scientists currently preparing for the GLAST mission from NASA’s Goddard Space Flight Centre in Greenbelt, Maryland, USA, in this month’s Physics World.

The Gamma-Ray Large Area Space Telescope (GLAST), to be launched on 16 May 2008, is a four-tonne observatory packed with state-of-the-art particle detectors that will study the gamma-ray sky in unprecedented detail.

Gamma rays are a form of electromagnetic radiation with much higher frequency and energy than visible light, UV light or even X-rays. Having such high energy, gamma rays are hard to collect and focus in the way that a conventional telescope does with visible light. Gamma rays are therefore the most difficult form of electromagnetic radiation to track in space.

Whereas visible light reveals thousands of stars and individual planets moving slowly across the sky, studying the skies at gamma-ray frequencies reveals a much weirder picture of space.

Gamma rays are not produced by hot, glowing objects, but from collisions between charged, very rapidly moving, particles and matter or light. The high frequency photons that are emitted from these collisions provide a glimpse of the most extreme astrophysical processes known.

Black holes, for example, accelerate matter to produce extreme energies in active galaxies. The gamma rays emitted in these scenarios have the equivalent energy to that of all the stars in an entire galaxy over all wavelengths.

Until now, however, existing ground-based gamma-ray detectors have not been sophisticated enough to measure these emissions in any detail over long periods. The astrophysicists cite looking for signatures of as-yet-unknown fundamental physical processes as a key reason for embarking on this project.

Julie McEnery, Steve Ritz and Neil Gehrels of NASA’s Goddard Space Centre, write, “We expect GLAST to have a large impact on many areas of astrophysics but what is most exciting are the surprises: with any luck, the greatest GLAST science has not even been thought of yet.”

Source: Institute of Physics

Explore further: Testing to diagnose power event in Mars rover

add to favorites email to friend print save as pdf

Related Stories

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Monster black hole discovered at cosmic dawn

Feb 25, 2015

Scientists have discovered the brightest quasar in the early universe, powered by the most massive black hole yet known at that time. The international team led by astronomers from Peking University in China ...

Telescopes give shape to furious black hole winds

Feb 19, 2015

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA's (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions—a ...

Recommended for you

Testing to diagnose power event in Mars rover

16 hours ago

NASA's Curiosity Mars rover is expected to remain stationary for several days of engineering analysis following an onboard fault-protection action on Feb. 27 that halted a process of transferring sample material ...

ESA experts assess risk from exploded satellite

17 hours ago

After studying the recent explosive break-up of a US satellite, ESA space debris experts have concluded this event does not increase the collision risk to nearby ESA missions in any meaningful way.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.