Heat transfer between materials is focus of new research grant

Apr 30, 2008

Managing heat is a major challenge for engineers who work on devices from jet engines to personal electronics to nano-scale transistors.

A team led by a University of Michigan mechanical engineer has received a five-year, $6.8-million grant from the Air Force to examine this problem, which is a barrier to more powerful, efficient devices.

Led by Kevin Pipe, an assistant professor in the Department of Mechanical Engineering, the team has received a Multidisciplinary University Research Initiative (MURI) award from the Air Force Office of Scientific Research. The research group includes nine scientists and engineers from three universities, including Brown University and the University of California at Santa Cruz.

"The processes by which heat is transferred at interfaces between different materials are poorly understood," Pipe said. "But in many systems, the ability to either efficiently transfer or block heat flow from one material to another is critically important to performance and reliability."

Inefficient heat flow is a main roadblock in the development of lasers and transistors that can attain higher powers. On the other hand, blocking heat exchange can dramatically improve the efficiency of thermoelectric energy conversion for compact power sources.

Pipe's group will use ultrafast lasers in a special X-ray technique developed by David Reis, a team member and associate professor in Physics at U-M. The technique allows researchers to actually watch the vibrations of the atoms that carry heat energy across an interface.

Using nanotechnology, Pipe and his colleagues will reengineer the surfaces of materials to regulate the flow of heat.

"A broad range of military and commercial applications stand to benefit from thermal interface control, including heat sinks for high-power electronics, thermal barrier coatings for aerospace components, and thermoelectric materials for power generation," Pipe said.

In addition to Pipe, the U-M team includes materials science and engineering professors Rachel Goldman and John Kieffer, and assistant professor Max Shtein, as well as physics professor Roberto Merlin and associate professor David Reis. Other members of the team include physics professor Humphrey Maris and engineering professor Arto Nurmikko of Brown University and electrical engineering associate professor Ali Shakouri of U-C Santa Cruz.

The Air Force MURI program is designed to focus on large multidisciplinary topic areas that intersect more than one traditional discipline, bringing together scientists and engineers with different backgrounds to accelerate both basic research and transition to application.

Source: University of Michigan

Explore further: Atoms to product: Aiming to make nanoscale benefits life-sized

add to favorites email to friend print save as pdf

Related Stories

Coal gas boom in China holds climate change risks

3 hours ago

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

Some anti-inflammatory drugs affect more than their targets

19 hours ago

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Canola flowers faster with heat genes

19 hours ago

(Phys.org) —A problem that has puzzled canola breeders for years has been solved by researchers from The University of Western Australia - and the results could provide a vital breakthrough in understanding ...

Climate change: meteorologists preparing for the worst

17 hours ago

Intense aerial turbulence, ice storms and scorching heatwaves, huge ocean waves—the world's climate experts forecast apocalyptic weather over the coming decades at a conference in Montreal that ended Thursday.

Recommended for you

Biomimetic photodetector 'sees' in color

Aug 25, 2014

(Phys.org) —Rice University researchers have created a CMOS-compatible, biomimetic color photodetector that directly responds to red, green and blue light in much the same way the human eye does.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet May 01, 2008
Also give some thought to heat transfer within the human/animal body! One theory of cancer cause and spread is the failure to transfer heat energy between cells. Cancer is energy caused.