Copper nanowires grown by new process create long-lasting displays

Apr 28, 2008

A new low-temperature, catalyst-free technique for growing copper nanowires has been developed by researchers at the University of Illinois. The copper nanowires could serve as interconnects in electronic device fabrication and as electron emitters in a television-like, very thin flat-panel display known as a field-emission display.

“We can grow forests of freestanding copper nanowires of controlled diameter and length, suitable for integration into electronic devices,” said Kyekyoon (Kevin) Kim, a professor of electrical and computer engineering.

“The copper nanowires are grown on a variety of surfaces, including glass, metal and plastic by chemical vapor deposition from a precursor,” said Hyungsoo Choi, a research professor in the Micro and Nanotechnology Laboratory and in the department of electrical and computer engineering. “The patented growth process is compatible with contemporary silicon-processing protocols.”

The researchers describe the nanowires, the growth process, and a proof-of-principle field-emission display in a paper accepted for publication in the journal Advanced Materials, and posted on its Web site.

Typically, the nanowires of 70 to 250 nanometers in diameter are grown on a silicon substrate at temperatures of 200 to 300 degrees Celsius and require no seed or catalyst. The size of the nanowires is controlled by the processing conditions, such as substrate, substrate temperature, deposition time and precursor feeding rate. The columnar, five-sided nanowires terminate in sharp, pentagonal tips that facilitate electron emission.

To demonstrate the practicability of the low-temperature growth process, the researchers first grew an array of copper nanowires on a patterned silicon substrate. Then they fashioned a field-emission display based on the array’s bundles of nanowires.

In a field-emission display, electrons emitted from the nanowire tips strike a phosphor coating to produce an image. Because the researchers used a bundle of nanowires for each pixel in their display, the failure of a few nanowires will not ruin the device.

“The emission characteristics of the copper nanowires in our proof-of-principle field-emission display were very good,” said Kim, who also is affiliated with the U. of I.’s department of materials science and engineering, department of bioengineering, department of nuclear, plasma and radiological engineering, Beckman Institute, Micro and Nanotechnology Laboratory, and the Institute for Genomic Biology. “Our experimental results suggest bundled nanowires could lead to longer lasting field-emission displays.”

In addition to working on flexible displays made from copper nanowires grown on bendable plastic, the researchers are also working on silver nanowires.

Source: University of Illinois at Urbana-Champaign

Explore further: Graphene sensor tracks down cancer biomarkers

add to favorites email to friend print save as pdf

Related Stories

Copper shines as flexible conductor

Aug 22, 2014

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Copper Nanowires Enable Bendable Displays, Solar Cells

Jun 01, 2010

(PhysOrg.com) -- A team of Duke University chemists has perfected a simple way to make tiny copper nanowires in quantity. The cheap conductors are small enough to be transparent, making them ideal for thin-film ...

Chemists measure copper levels in zinc oxide nanowires

Feb 19, 2008

Chemists at the National Institute of Standards and Technology have been the first to measure significant amounts of copper incorporated into zinc oxide (ZnO) nanowires during fabrication. The issue is important ...

Recommended for you

Engineered proteins stick like glue—even in water

10 hours ago

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed new materials that ...

Smallest possible diamonds form ultra-thin nanothreads

10 hours ago

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

User comments : 0