MIT professor will lead science team for NASA satellite to map Earth's water cycle

Apr 28, 2008
MIT professor will lead science team for NASA satellite to map Earth's water cycle
The orbiting SMAP satellite will make simultaneous radiometer and radar measurements using a shared reflector antenna that is rotated to scan the Earth surface. The large 6 meter in diameter reflector is made up of light-weight deployable mesh material that stows for launch in the rocket enclosure. Image Courtesy of NASA Jet Propulsion Laboratory

MIT Professor Dara Entekhabi will lead the science team designing a NASA satellite mission to make global soil moisture and freeze/thaw measurements, data essential to the accuracy of weather forecasts and predictions of global carbon cycle and climate. NASA announced recently that the Soil Moisture Active-Passive mission (SMAP) is scheduled to launch December 2012.

At present, scientists have no network for gathering soil moisture data as they do for rainfall, winds, humidity and temperature. Instead, that data is gathered only at a few scattered points around the world.

“Soil moisture is the lynchpin of the water, energy and carbon cycles over land. It is the variable that links these three cycles through its control on evaporation and plant transpiration. Global monitoring of this variable will allow a new perspective on how these three cycles work and vary together in the Earth system.” said Entekhabi, director of the Parsons Laboratory for Environmental Science and Engineering in MIT’s Department of Civil and Environmental Engineering.

“Additionally because soil moisture is a state variable that controls both water and energy fluxes at the land surface, we anticipate that assimilation of the global observations will improve the skill in numerical weather prediction, especially for events that are influenced by these fluxes at the base of the atmosphere,” said Entekhabi.

The SMAP mission is based on an earlier satellite project led by Entekhabi that had been selected by NASA from among 20 proposals and scheduled for a 2009 launch. However, the Hydrosphere State Mission (Hydros) was cancelled abruptly in 2005 when funding for NASA’s earth sciences missions was diverted. But in July 2007, the National Research Council recommended that NASA make the soil moisture measurement project a top priority and place it on a fast track for launch.

The Jet Propulsion Laboratory (JPL) in Pasadena, Calif., is the lead NASA center for the project, with participation from NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Md. NASA’s lead scientists on the project are Eni Njoku, SMAP project scientist at JPL, and Peggy O’Neill, SMAP deputy project scientist at GSFC.

“Research conducted by MIT faculty and students is at the forefront of SMAP’s science objectives, and MIT can play an important role in contributing to the mission’s algorithms and science products,” said Njoku, who earned his Ph.D. from MIT in 1976. “MIT students have the opportunity to be involved in many aspects of the mission.”

SMAP’s launch in 2012 is feasible in part because Entekhabi and other scientists continued to develop the mission, even when NASA’s support was withdrawn in 2005.

The instruments that will be deployed in SMAP will gather both passive and active low-frequency microwave measurements on a continuous basis, essentially creating a map of global surface soil moisture. A 6-meter deployable mesh antenna on a satellite will gather data across a swath of 1,000 kilometers, creating ribbons of measurements around the globe and completing the cycle every few days.

In addition to measuring soil moisture, the satellite will detect if the surface moisture is frozen. In forests, the freeze/thaw state determines the length of the growing season and the balance between carbon assimilation into biomass and the loss of carbon due to vegetation respiration. The result of this balance can tell scientists if a forest is a net source or net sink of carbon.

One mission obstacle that Entekhabi and team solved last year was integrating the two types of measurements the satellite would gather: passive measurements collected by radiometer, and active collected by radar. The radiometer measurements provide highly accurate data at a coarse resolution of 40 kilometers. The radar measurements provide much higher resolution (3 kilometers), but with less sensitivity. The combination of the two measurements through algorithms designed by the SMAP science team will result in accurate mapping of global soil moisture at 10 km.

Source: Massachusetts Institute of Technology

Explore further: France raises heat on decision for next Ariane rocket

add to favorites email to friend print save as pdf

Related Stories

Managing water resources in forest restoration

Sep 08, 2014

Hundreds of thousands of acres on the Coconino National Forest are slated for thinning during the next 20 years. Two NAU researchers want the forest restoration efforts to result in better water quality and ...

New satellite data will help farmers facing drought

Aug 19, 2014

(Phys.org) —About 60 percent of California is experiencing "exceptional drought," the U.S. Drought Monitor's most dire classification. The agency issued the same warning to Texas and the southeastern United ...

New analysis links tree height to climate

Aug 14, 2014

What limits the height of trees? Is it the fraction of their photosynthetic energy they devote to productive new leaves? Or is it their ability to hoist water hundreds of feet into the air, supplying the ...

Studying wetlands as a producer of greenhouse gases

Jul 22, 2014

(Phys.org) —Wetlands are well known for their beneficial role in the environment. But UConn Honors student Emily McInerney '15 (CAHNR) is studying a less widely known role of wetlands – as a major producer ...

Recommended for you

Miranda: An icy moon deformed by tidal heating

12 hours ago

Miranda, a small, icy moon of Uranus, is one of the most visually striking and enigmatic bodies in the solar system. Despite its relatively small size, Miranda appears to have experienced an episode of intense ...

The latest observations of interstellar particles

18 hours ago

With all the news about Voyager 1 leaving the heliosphere and entering interstellar space you might think that the probe is the first spacecraft to detect interstellar particles. That isn't entirely true, ...

User comments : 0