1600 eruption caused global disruption

Apr 23, 2008

The 1600 eruption of Huaynaputina in Peru had a global impact on human society, according to a new study of contemporary records by geologists at UC Davis.

The eruption is known to have put a large amount of sulfur into the atmosphere, and tree ring studies show that 1601 was a cold year, but no one had looked at the agricultural and social impacts, said Ken Verosub, professor of geology at UC Davis.

"We knew it was a big eruption, we knew it was a cold year, and that's all we knew," Verosub said.

Sulfur reacts with water in the air to form droplets of sulfuric acid, which cool the planet by reducing the amount of sunlight reaching the Earth's surface. But the droplets soon fall back to Earth, so the cooling effects last only a year or so.

Verosub and undergraduate student Jake Lippmann combed through records from the turn of the 17th century from Europe, China and Japan, as well as the Spanish and Portuguese colonies in South America and the Philippines, for information about changes in climate, agriculture and society.

In Russia, 1601-1603 brought the worst famine in the country's history, leading to the overthrow of the reigning tsar. Records from Switzerland, Latvia and Estonia record exceptionally cold winters in 1600-1602; in France, the 1601 wine harvest was late, and wine production collapsed in Germany and colonial Peru. In China, peach trees bloomed late, and Lake Suwa in Japan had one of its earliest freezing dates in 500 years.

"In one sense, we can't prove that the volcano was responsible for all this," Verosub said. "But we hope to show that 1601 was a consistently bad year, connected by this event."

The previous major eruption that might have affected global climate was in 1452-53, when records were much less complete: in Europe, people began to take more careful note of the natural world after the Renaissance. The 1815 Tambora eruption in Indonesia had a well-documented impact on global agriculture, so such eruptions may occur as often as every 200 years, Verosub noted.

Verosub hopes to expand the study by examining records kept by the Jesuit order in Seville, Spain, and from the Ming Dynasty in China.

The initial results are presented in an article in Eos, the transactions of the American Geophysical Union.

Source: University of California - Davis

Explore further: Warm ocean melting East Antarctica's largest glacier

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Warm ocean melting East Antarctica's largest glacier

20 minutes ago

The largest glacier in East Antarctica, containing ice equivalent to a six-metre (20-foot) rise in global sea levels, is melting due to warm ocean water, Australian scientists said on Monday.

Geologists solve mystery of Tibetan mountains

Jan 23, 2015

In the most comprehensive study of its kind, University of Kansas geologists have unraveled one of the geologic mysteries of Tibet. The research, recently published online in Nature Geoscience, shows that i ...

Image: Greenland's Leidy Glacier

Jan 23, 2015

Located in the northwest corner of Greenland, Leidy Glacier is fed by ice from the Academy Glacier (upstream and inland). As Leidy approaches the sea, it is diverted around the tip of an island that separates ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

jahbless
1 / 5 (1) Apr 24, 2008
Confirmation bias?
out7x
1 / 5 (1) Apr 25, 2008
Check the ice core data, Greenland/Antarctic.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.