Scientists discover how nanocluster contaminants increase risk of spreading

Apr 17, 2008

For almost half a century, scientists have struggled with plutonium contamination spreading further in groundwater than expected, increasing the risk of sickness in humans and animals.

It was known nanometer sized clusters of plutonium oxide were the culprit, but no one had been able to study its structure or find a way to separate it from the groundwater.

Scientists at the U.S. Department of Energy’s Argonne National Laboratory, in collaboration with researchers from the University of Notre Dame, were able to use high-energy X-rays from the Argonne Advanced Photon Source to finally discover and study the structure of plutonium nanoclusters.

“When plutonium forms into the clusters, its chemistry is completely different and no one has really been able to assess what it is, how to model it or how to separate it Argonne senior chemist Lynda Soderholm said. “People have known about and tried to understand the nanoclusters, but it was the modern analytical techniques and the APS that allowed us understand what it is.”

The nanoclusters are made up of exactly 38 plutonium atoms and had almost no charge. Unlike stray plutonium ions, which carry a positive charge, they are not attracted to the electrons in plant life, minerals, etc. which stopped the ions’ progression in the ground water.

Models have been based on the free-plutonium model, creating discrepancies between what is expected and reality. Soderholm said that with knowledge of the structure, scientists can now create better models to account for not only free-roaming plutonium ions, but also the nanoclusters.

The clusters also are a problem for plutonium remediation. The free ions are relatively easy to separate out from groundwater, but the clusters are difficult to remove.

“As we learn more, we will be able to model the nanoclusters and figure out how to break them apart,” Soderholm said. “Once they are formed, they are very hard to get rid of.”

Soderholm said other experiments have shown some clusters with different numbers of plutonium atoms and she plans to examine -- together with her collaborators S. Skanthakumar, Richard Wilson and Peter Burns of Argonne’s Chemical Sciences and Engineering Division-- the unique electric and magnetic properties of the clusters.

Source: Argonne National Laboratory

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Understanding of radiation damage LEAPs forward

Apr 05, 2012

A faint nightclub beat greets visitors to a small room housing the Localized Electron Atom Probe (LEAP). But that’s no stereo cranking out house music; it’s a rhythmic pump cooling a tiny sample ...

Lifelong pursuit of the secrets of the cosmos

Apr 22, 2011

In a small room at Caltech, space physicist Ed Stone and four of his colleagues puzzle over a trove of data that has just arrived from the bulbous edge of the solar system.

Recommended for you

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

weewilly
not rated yet Apr 17, 2008
I can only hope that someone,someday,somewhere will find a way to nuetralize the worlds longest lasting toxic substance known.