Are sacrificial bacteria altruistic or just unlucky?

Apr 15, 2008

An investigation of the genes that govern spore formation in the bacteria B. subtilis shows that chance plays a significant role in determining which of the microbes sacrifice themselves for the colony and which go on to form spores.

B. subtilis, a common soil bacteria, is a well-known survivor. When running short of food, it can alternatively band together in colonies or encase itself in a tough, protective spore to wait for better times. In fact, B. subtilis is so good at making spores that it's often used as a model organism by biologists who study bacterial spore formation.

"It's too early to say whether B. subtilis is truly altruistic," said co-author Oleg Igoshin, assistant professor of bioengineering at Rice University. "What is clear from this is that not all bacteria are going to look and act the same, and that's something that can be overlooked when people either study or attempt to control bacteria with population-wide approaches."

For example, Igoshin said doctors and food safety engineers might need to amend general approaches aimed at controlling bacteria with more targeted methods that also account for the uncharacteristic individual.

The new results appear in the April 15 issue of Molecular Systems Biology. The experimental work, which was done by Jan-Willem Veening, currently at Newcastle University, and by other members of Oscar Kuipers' research group at the University of Groningen in the Netherlands, focused on the B. subtilis genes that regulate both spore formation and the production cycles of two proteins -- subtilisin and bacillopeptidase. These two proteins help break apart dead cells and convert them into food. They are produced and released into the surrounding environment by B. subtilis cells that are running low on food.

From previous studies, scientists know there is some overlap between genes that control the production of the two proteins and those that control spore formation.

"Only a portion of the bacteria in a colony will form spores and only portion of the bacteria produce subtilisin, and we were interested in probing the genetic basis for this," Igoshin said. "How is it decided which cells become spores and which don't?"

Igoshin, a computational biologist, used computer simulations to help decipher and interpret the team's experimental results. He said the team found that fewer than 30 percent of individuals in a colony produce large quantities of the food-converting proteins. Even though the proteins benefit all members of the colony and help some cells to become spores, the cells that produce the proteins in bulk do not form spores themselves.

"There's a feedback loop, so that cells that start producing the proteins early get a reinforced signal to keep making them," Igoshin said. "We found that it's probabilistic events -- chance, if you will -- that dictates who is early and who is late. The early ones start working for the benefit of everyone while the later ones save valuable resources to ensure successful completion of sporulation program. Many cells will end up committing to sporulation before they had a chance to contribute to protease production"

Igoshin said a key piece of evidence confirming modeling predictions came in experiments that tracked genetically identical sister cells, some of which became protein producers and some of which didn't.

Source: Rice University

Explore further: Obama recommends extended wilderness zone in Alaska

add to favorites email to friend print save as pdf

Related Stories

Bacteria coordinate activities with chemical 'language'

Jan 15, 2015

Ludwig Maximilian University of Munich researchers have discovered a previously unknown chemical language used by many bacterial species to coordinate their activities, and show in a model organism that such ...

How E. coli passes safely through stomach acid

Jan 14, 2015

In some parts of the world, many small children become infected with severe diarrhea which often proves fatal. The condition is usually caused by strains of Escherichia coli (commonly known as E. coli) bacteria, and bacteria ...

Recommended for you

Obama recommends extended wilderness zone in Alaska

10 hours ago

US President Barack Obama said Sunday he would recommend a large swath of Alaska be designated as wilderness, the highest level of federal protection, in a move likely to anger oil proponents.

Uganda seizes massive ivory and pangolin haul

12 hours ago

Ugandan wildlife officers have seized a huge haul of elephant ivory and pangolin scales, representing the deaths of hundreds of endangered animals, police said Sunday.

The elephant poaching business in numbers

20 hours ago

From the pittance paid to local poachers to a multi-billion dollar industry, here are some of the key numbers related to Africa's endangered elephants:

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.