Missions to Mars: GSI will investigate radiation risks for astronauts

Apr 14, 2008
Missions to Mars
View inside the 120 meters long accelerator UNILAC at GSI used to generate the ion beams. Credit: G. Otto

The European Space Agency (ESA) has chosen the GSI accelerator facility to assess radiation risks that astronauts will be exposed to on a Mars mission. GSI was selected because its accelerator is the only one in Europe able to create ion beams similar to those found in space. To determine possible health risks of manned space flights, scientists from all over Europe have been asked to investigate the effects of ion beams in human cells and organs. The first experiments will be launched this year and subsequently continued at GSI’s planned FAIR accelerator system.

Astronauts flying to the moon or Mars would be constantly bombarded by cosmic rays, whose health risks are not known in detail. Unlike the situation in space, the earth’s surface is largely shielded from cosmic rays by the planet’s atmosphere and magnetic field. In general, radiation can damage human cells and their genetic material. In addition to causing cancer, it can directly kill cells, which can later result in extensive damage in tissues including the brain.

The aim of the planned research activities is to quantitatively examine the biological effects of ion beams on the human genome and to determine how these effects would manifest themselves over time. For these tests, scientists will irradiate molecules and cell and tissue samples. The results of the research could then be used to develop optimized radiation shields for space exploration, which are a prerequisite for conducting safe missions to Mars.

The ion beams found in space have a wide variety of sources and can be derived from all types of elements, ranging from the lightest, hydrogen, to the heaviest, uranium. GSI’s accelerator facility can generate all types of ion beams, making it particularly well-suited for the planned research project. The research possibilities will be greatly expanded in the future by the FAIR accelerator facility, which will be able to produce even more energetic and intense ion beams.

Source: Helmholtz Association of German Research Centres

Explore further: Cassini sees sunny seas on Titan

add to favorites email to friend print save as pdf

Related Stories

Light of life

Aug 27, 2014

A fluorescent microscopic view of cells from a type of bone cancer, being studied for a future trip to deep space – aiming to sharpen our understanding of the hazardous radiation prevailing out there.

NASA's IceCube no longer on ice

Jul 31, 2014

NASA's Science Mission Directorate (SMD) has chosen a team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, to build its first Earth science-related CubeSat mission.

Recommended for you

Cassini sees sunny seas on Titan

18 hours ago

(Phys.org) —As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

Is space tourism safe or do civilians risk health effects?

22 hours ago

Several companies are developing spacecraft designed to take ordinary citizens, not astronauts, on short trips into space. "Space tourism" and short periods of weightlessness appear to be safe for most individuals ...

An unmanned rocket exploded. So what?

Oct 30, 2014

Sputnik was launched more than 50 years ago. Since then we have seen missions launched to Mercury, Mars and to all the planets within the solar system. We have sent a dozen men to the moon and many more to ...

NASA image: Sunrise from the International Space Station

Oct 30, 2014

NASA astronaut Reid Wiseman posted this image of a sunrise, captured from the International Space Station, to social media on Oct. 29, 2014. Wiseman wrote, "Not every day is easy. Yesterday was a tough one. ...

Copernicus operations secured until 2021

Oct 30, 2014

In a landmark agreement for Europe's Copernicus programme, the European Commission and ESA have signed an Agreement of over €3 billion to manage and implement the Copernicus 'space component' between 2014 ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

GDM
2 / 5 (1) Apr 14, 2008
Didn't I read on a recent physorg entry that nanotubes filled with copper and surrounded by lithium would convert radiation directly into electricity?
holoman
3.5 / 5 (2) Apr 14, 2008
Near light speed propulsion would reduce transit time to Mars thereby reducing radiation exposure.
earls
3 / 5 (1) Apr 14, 2008
Yes, lets jump in our Vulvox near light speed spaceships (patent pending) and fly across the Universe. What are we waiting for?

"shielded from cosmic rays by the planet%u2019s atmosphere and magnetic field"

Can we not produce a similar technology? A magnetic field bubble?
Sophos
4 / 5 (2) Apr 15, 2008
Yes Earls
However the mass costs (in magnets and extra energy costs) with our current technology make this method not currently practical. You would get as much radiation shielding from just the mass of the magnets as you would the magnetic field.
But there are some neat developments on the horizon that may make this possible soon.
holoman
5 / 5 (1) Apr 15, 2008
Here is a near light speed propulsion engine just unveiled that uses energy from space.

http://nlspropulsion.net
GDM
3 / 5 (2) Jul 25, 2008
Any long-distance trek to our solar system planets/ateroids will require large amounts of water, which also provides a good anti-radiation shield.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.