Missions to Mars: GSI will investigate radiation risks for astronauts

Apr 14, 2008
Missions to Mars
View inside the 120 meters long accelerator UNILAC at GSI used to generate the ion beams. Credit: G. Otto

The European Space Agency (ESA) has chosen the GSI accelerator facility to assess radiation risks that astronauts will be exposed to on a Mars mission. GSI was selected because its accelerator is the only one in Europe able to create ion beams similar to those found in space. To determine possible health risks of manned space flights, scientists from all over Europe have been asked to investigate the effects of ion beams in human cells and organs. The first experiments will be launched this year and subsequently continued at GSI’s planned FAIR accelerator system.

Astronauts flying to the moon or Mars would be constantly bombarded by cosmic rays, whose health risks are not known in detail. Unlike the situation in space, the earth’s surface is largely shielded from cosmic rays by the planet’s atmosphere and magnetic field. In general, radiation can damage human cells and their genetic material. In addition to causing cancer, it can directly kill cells, which can later result in extensive damage in tissues including the brain.

The aim of the planned research activities is to quantitatively examine the biological effects of ion beams on the human genome and to determine how these effects would manifest themselves over time. For these tests, scientists will irradiate molecules and cell and tissue samples. The results of the research could then be used to develop optimized radiation shields for space exploration, which are a prerequisite for conducting safe missions to Mars.

The ion beams found in space have a wide variety of sources and can be derived from all types of elements, ranging from the lightest, hydrogen, to the heaviest, uranium. GSI’s accelerator facility can generate all types of ion beams, making it particularly well-suited for the planned research project. The research possibilities will be greatly expanded in the future by the FAIR accelerator facility, which will be able to produce even more energetic and intense ion beams.

Source: Helmholtz Association of German Research Centres

Explore further: Scars on Mars from 2012 rover landing fade—usually

Related Stories

The revolutionary ion engine that took spacecraft to Ceres

Mar 09, 2015

The NASA spacecraft Dawn has spent more than seven years travelling across the Solar System to intercept the asteroid Vesta and the dwarf planet Ceres. Now in orbit around Ceres, the probe has returned the first images and data from these dist ...

Recommended for you

Cassini: Return to Rhea

9 hours ago

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

Comet dust—planet Mercury's 'invisible paint'

16 hours ago

A team of scientists has a new explanation for the planet Mercury's dark, barely reflective surface. In a paper published in Nature Geoscience, the researchers suggest that a steady dusting of carbon from p ...

It's 'full spin ahead' for NASA soil moisture mapper

19 hours ago

The 20-foot (6-meter) "golden lasso" reflector antenna atop NASA's new Soil Moisture Active Passive (SMAP) observatory is now ready to wrangle up high-resolution global soil moisture data, following the successful ...

What drives the solar cycle?

19 hours ago

You can be thankful that we bask in the glow of a relatively placid star. Currently about halfway along its 10 billion year career on the Main Sequence, our sun fuses hydrogen into helium in a battle against ...

MESSENGER completes 4,000th orbit of Mercury

19 hours ago

On March 25, the MESSENGER spacecraft completed its 4,000th orbit of Mercury, and the lowest point in its orbit continues to move closer to the planet than ever before. The orbital phase of the MESSENGER ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

GDM
2 / 5 (1) Apr 14, 2008
Didn't I read on a recent physorg entry that nanotubes filled with copper and surrounded by lithium would convert radiation directly into electricity?
holoman
3.5 / 5 (2) Apr 14, 2008
Near light speed propulsion would reduce transit time to Mars thereby reducing radiation exposure.
earls
3 / 5 (1) Apr 14, 2008
Yes, lets jump in our Vulvox near light speed spaceships (patent pending) and fly across the Universe. What are we waiting for?

"shielded from cosmic rays by the planet%u2019s atmosphere and magnetic field"

Can we not produce a similar technology? A magnetic field bubble?
Sophos
4 / 5 (2) Apr 15, 2008
Yes Earls
However the mass costs (in magnets and extra energy costs) with our current technology make this method not currently practical. You would get as much radiation shielding from just the mass of the magnets as you would the magnetic field.
But there are some neat developments on the horizon that may make this possible soon.
holoman
5 / 5 (1) Apr 15, 2008
Here is a near light speed propulsion engine just unveiled that uses energy from space.

http://nlspropulsion.net
GDM
3 / 5 (2) Jul 25, 2008
Any long-distance trek to our solar system planets/ateroids will require large amounts of water, which also provides a good anti-radiation shield.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.