Researcher looks to use nanoparticles for food safety

Apr 10, 2008

Byron Brehm-Stecher, assistant professor in food science and human nutrition, has some big ideas for his work with tiny particles. His latest research project will allow him to study the potential of using silver nanoparticles to improve the safety of the world’s food supply.

Although the particles can’t be added directly to foods, the ultimate goal of this project is to develop food-related applications such as microbe-resistant fabrics or non-biofouling surfaces. The research, he said, could have a large impact on the safety of foods.

“Through our work, we hope to gain a greater understanding of how these materials affect microbial structure or function,” Brehm-Stecher said. “This may lead to new approaches for killing foodborne pathogens and enhancing food safety. For example, silver nanoparticles are already being used in food packaging to soak up the plant-ripening hormone ethylene, extending the shelf life of fruits. The science is at a basic point right now, but we expect that it will translate into something more applied in the future. I’m looking forward to extending this as far as the questions we have will take us.”

Brehm-Stecher said they hope to learn more about how silver nanoparticles exert their antimicrobial activities by testing QSI-Nano® Silver for its ability to interact with microbial cells.

QSI-Nano® Silver is prepared from pure metallic silver that is vaporized in the presence of an inert gas, and then condensed under controlled conditions to form discrete particles smaller than 100 nanometers in diameter. A nanometer is a billionth of a meter. You can get an idea of the size difference between a nanometer and a meter by imagining something the size of a marble sitting next to an object the size of the Earth.

“One of the things we do in my lab is to develop multi-ingredient antimicrobial mixtures. I was interested in finding antimicrobials that would be physically compatible with other compounds that we’re working with,” Brehm-Stecher said. “It looked like the nanoparticles could provide us with a good solution. I approached QuantumSphere and they were open to sending us compounds and working with us. We’re interested in many of the same things. It’s a good relationship.”

Brehm-Stecher started work on the project in January 2008. He and graduate assistant Heidi Weinkauf have had good results so far.

“It’s been very fulfilling and exciting to be able to design experiments with Heidi and see what happens,” Brehm-Stecher said. “The results so far have met and surpassed our expectations, and we’re only a couple of months into the grant. Every experiment, whether it turns out as expected or not, points us in a new direction and we are now getting some fascinating clues about how nanosilver works as an antimicrobial.”

Scientists face many challenges when working with unfamiliar materials. Because Brehm-Stecher and Weinkauf were new to nanoparticle research, they collaborated with QuantumSphere chief scientist Doug Carpenter early on to optimize their test methods and begin generating data.

Source: Iowa State University

Explore further: Gold nanoparticles help target, quantify breast cancer gene segments in a living cell

add to favorites email to friend print save as pdf

Related Stories

Computer program could help solve arson cases

1 hour ago

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.

Madagascar to drain crude from stricken tanker

2 hours ago

Madagascar will during the weekend pump crude from a tanker that ran aground a week ago off its picturesque northern coast to prevent a spill, maritime authorities said Thursday.

Recommended for you

Cloaked DNA nanodevices survive pilot mission

Apr 22, 2014

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GVA
not rated yet Apr 10, 2008
Dear Byron,
To actualize your ideas, please visit our fullerene site: http://fullwater.com.ua (Russ)
(in Engl on .../page6.html, .../page8.html and .../page4.html)

Grigoriy Andrievsky

Senior Research Scientist, PhD,
Nanostructured Materials Dept.,
ISMA of National Academy Science of Ukraine,
STC 'Institute for Single Crystals'
60, Lenin ave.,
61001, Kharkov,
Ukraine.

Phone: 38 057 341 0207
38 057 719 6103
Mobile: 38 095 894 65 21.
E-mail: yard@kharkov.ua
Andrievsky@isma.kharkov.ua

More news stories

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...