'Superdense' coding gets denser

Mar 24, 2008

The record for the most amount of information sent by a single photon has been broken by researchers at the University of Illinois. Using the direction of “wiggling” and “twisting” of a pair of hyper-entangled photons, they have beaten a fundamental limit on the channel capacity for dense coding with linear optics.

“Dense coding is arguably the protocol that launched the field of quantum communication,” said Paul Kwiat, a John Bardeen Professor of Physics and Electrical and Computer Engineering. “Today, however, more than a decade after its initial experimental realization, channel capacity has remained fundamentally limited as conceived for photons using conventional linear elements.”

In classical coding, a single photon will convey only one of two messages, or one bit of information. In dense coding, a single photon can convey one of four messages, or two bits of information.

“Dense coding is possible because the properties of photons can be linked to one another through a peculiar process called quantum entanglement,” Kwiat said. “This bizarre coupling can link two photons, even if they are located on opposite sides of the galaxy.”

Using linear elements, however, the standard protocol is fundamentally limited to convey only one of three messages, or 1.58 bits. The new experiment surpasses that threshold by employing pairs of photons entangled in more ways than one (hyper-entangled). As a result, additional information can be sent and correctly decoded to achieve the full power of dense coding.

Kwiat, graduate student Julio Barreiro and postdoctoral researcher Tzu-Chieh Wei (now at the University of Waterloo) describe their recent experiment in a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Through the process of spontaneous parametric down conversion in a pair of nonlinear crystals, the researchers first produce pairs of photons simultaneously entangled in polarization, or “wiggling” direction, and in orbital angular momentum, or “twisting” direction. They then encode a message in the polarization state by applying birefringent phase shifts with a pair of liquid crystals.

“While hyper-entanglement in spin and orbital angular momentum enables the transmission of two bits with a single photon,” Barreiro said, “atmospheric turbulence can cause some of the quantum states to easily decohere, thus limiting their likely communication application to satellite-to-satellite transmissions.”

ource: University of Illinois at Urbana-Champaign

Explore further: What is Nothing?

add to favorites email to friend print save as pdf

Related Stories

Quantum tech disappoints, but only because we don't get it

Jul 16, 2014

Over the next five years, the UK government will spend £270m on supporting research in "quantum technology". When budget announcements were made in 2013, provisions for offshore wind and shale gas extraction were received ...

Chemists let fluorescent sugar sensors 'calculate'

Jun 19, 2014

In a chemistry lab at the Friedrich Schiller University Jena (Germany): Prof. Dr. Alexander Schiller works at a rectangular plastic board with 384 small wells. The chemist carefully pipets some drops of sugar ...

3D modeling of the Sun from the core to the surface

May 14, 2014

A team at the Astrophysics, Instrumentation and Modeling Laboratory (CEA/CNRS/Université Paris Diderot) has successfully modeled, in 3D, the effects of gravity waves in an extremely comprehensive simulation ...

Recommended for you

What is Nothing?

Aug 22, 2014

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

Aug 22, 2014

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

Aug 21, 2014

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Mar 25, 2008
Although this article has lots of interesting information, the implication that Shannon's limit has been beat or that a SINGLE photon can contain more information, is simply false. The quickest way to explain this is with a classical analogy of entangled photon communication: Entangled photons go two ways--which is, classically, a full duplex link. One can send one-way data twice as fast over a full duplex link because the back-channel can be used to send reverse error correction codes and thus no forward error correction need be coded into the forward channel.