'Superdense' coding gets denser

Mar 24, 2008

The record for the most amount of information sent by a single photon has been broken by researchers at the University of Illinois. Using the direction of “wiggling” and “twisting” of a pair of hyper-entangled photons, they have beaten a fundamental limit on the channel capacity for dense coding with linear optics.

“Dense coding is arguably the protocol that launched the field of quantum communication,” said Paul Kwiat, a John Bardeen Professor of Physics and Electrical and Computer Engineering. “Today, however, more than a decade after its initial experimental realization, channel capacity has remained fundamentally limited as conceived for photons using conventional linear elements.”

In classical coding, a single photon will convey only one of two messages, or one bit of information. In dense coding, a single photon can convey one of four messages, or two bits of information.

“Dense coding is possible because the properties of photons can be linked to one another through a peculiar process called quantum entanglement,” Kwiat said. “This bizarre coupling can link two photons, even if they are located on opposite sides of the galaxy.”

Using linear elements, however, the standard protocol is fundamentally limited to convey only one of three messages, or 1.58 bits. The new experiment surpasses that threshold by employing pairs of photons entangled in more ways than one (hyper-entangled). As a result, additional information can be sent and correctly decoded to achieve the full power of dense coding.

Kwiat, graduate student Julio Barreiro and postdoctoral researcher Tzu-Chieh Wei (now at the University of Waterloo) describe their recent experiment in a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Through the process of spontaneous parametric down conversion in a pair of nonlinear crystals, the researchers first produce pairs of photons simultaneously entangled in polarization, or “wiggling” direction, and in orbital angular momentum, or “twisting” direction. They then encode a message in the polarization state by applying birefringent phase shifts with a pair of liquid crystals.

“While hyper-entanglement in spin and orbital angular momentum enables the transmission of two bits with a single photon,” Barreiro said, “atmospheric turbulence can cause some of the quantum states to easily decohere, thus limiting their likely communication application to satellite-to-satellite transmissions.”

ource: University of Illinois at Urbana-Champaign

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

Unavoidable disorder used to build nanolaser

Mar 23, 2014

Researchers the world round are working to develop optical chips, where light can be controlled with nanostructures. These could be used for future circuits based on light (photons) instead of electron - ...

More secure communications thanks to quantum physics

Mar 12, 2014

One of the recent revelations by Edward Snowden is that the U.S. National Security Agency is currently developing a quantum computer. Physicists aren't surprised by this news; such a computer could crack the encryption that ...

Quantum researchers close in on dream vacancy

Feb 19, 2014

(Phys.org) —Defects in microscopic diamonds caused by the presence of silicon could provide researchers with a potent basis for developing new technologies, including nanoscale sensing devices.

Physics: A fundamental force for future security

Feb 13, 2014

What is matter? What is energy? What holds matter together? How do the various constituents of the universe interact at the most basic level? Where does the Earth sit in relation to the rest of the universe? ...

Edison supercomputer electrifies scientific computing

Jan 30, 2014

The National Energy Research Scientific Computing (NERSC) Center recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva ...

Recommended for you

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

fleem
5 / 5 (1) Mar 25, 2008
Although this article has lots of interesting information, the implication that Shannon's limit has been beat or that a SINGLE photon can contain more information, is simply false. The quickest way to explain this is with a classical analogy of entangled photon communication: Entangled photons go two ways--which is, classically, a full duplex link. One can send one-way data twice as fast over a full duplex link because the back-channel can be used to send reverse error correction codes and thus no forward error correction need be coded into the forward channel.

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Unraveling the 'black ribbon' around lung cancer

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?