Ultra-Fast Quantum-Dot Information Storage

Mar 21, 2008 Laura Mgrdichian feature

The information-storage market is dominated by two main types: Flash memory, used in memory sticks and cell phones, and dynamic random access memory (DRAM), which is the main memory in a personal computer. Both types have their advantages and disadvantages, but a new type of memory, based on tiny atom clusters, called quantum dots, may soon displace both of them.

In research published in the March 4, 2008, online edition of Applied Physics Letters, scientists from the Technical University of Berlin, in Germany, and Istanbul University, in Turkey, describe how they created a type of quantum-dot-based memory device that can save information at speeds of only a few nanoseconds (billionths of a second).

The paper's lead author, Technical University of Berlin scientist Martin Geller, explained to PhysOrg.com, “Flash memory, which is today's market-driver in the semiconductor industry, and which everybody knows from memory sticks, digital cameras, and mp3-players, has a slow write time. The semiconductor industry is seeking faster Flash memories, but hasn't found an ultimate solution yet. Our quantum-dot-based memory may provide long storage time without power consumption of Flash memory, as wells as a fast write time and better scalability to real-life devices."

To be fair, the other established predecessor of quantum-dot memory, DRAM, does have some excellent qualities. It offers very fast information-access times—under 20 nanoseconds—and the information can be repeatedly written and rewritten on a DRAM; it has excellent so-called endurance. But a DRAM device has a big disadvantage: It is volatile, meaning the information has to be refreshed every ten milliseconds to be maintained, also resulting in a high power consumption.

“The very first prototype of our new quantum-dot-based memory scheme is already almost as fast as DRAM,” said Andreas Marent, a physicist at the Technical University of Berlin who took part in the research. “And in contrast to DRAM or Flash, the physical characteristics of quantum dots limit the write time to the picosecond, or trillionth of a second, range. That means a better device prototype should be more than 100 times faster than today's DRAM.”

The prototype consists of quantum dots of indium arsenide (InAs), a compound of the metals indium and arsenic, embedded in a layer of gallium arsenide (GaAs; gallium is also a metal). The GaAs layer is “p-doped,” which means it contains impurity atoms that impart it with excess free positively charge called holes. This InAs/GaAs structure is topped with a layer of “n-doped” GaAs, which contains extra electrons. Altogether, the structure is a p-n diode, an electrical device that allows current to flow only in one direction.

When a voltage is applied across this structure, the quantum dots become charged, which allows them to store bits of information, i.e. “0” or “1” values. Whether the quantum dots represent a 0 or 1 depends on the capacitance of the diode—how much charge it is holding. A larger capacitance indicates the quantum dots do not hold much positive charge, which equates to a “0.” A smaller capacitance means that the dots are filled with holes, representing a “1.”

Geller, Marent, and their colleagues say that the write times of their quantum-dot schemes are currently limited by the experimental setup and certain physical characteristics of the memory structure. In the future, after they make improvements to the structure, they expect that write times faster than 1 nanosecond may be possible. Even picoseconds seem possible, since the structure's physical limitation is in that range.

Said Prof. Dieter Bimberg, who is the group's leader at the Technical University of Berlin and co-author on the paper, “Our results and patents demonstrate that quantum dots like these we are studying might, in just a few years, revolutionize semiconductor memory.”

Citation: Appl. Phys. Lett. 92, 092108 (2008)

All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: The hemihelix: Scientists discover a new shape using rubber bands (w/ video)

add to favorites email to friend print save as pdf

Related Stories

Research could bring new devices that control heat flow

Jan 28, 2014

(Phys.org) —Researchers are proposing a new technology that might control the flow of heat the way electronic devices control electrical current, an advance that could have applications in a diverse range ...

Recommended for you

Mapping the road to quantum gravity

13 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

Steering chemical reactions with laser pulses

21 hours ago

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

User comments : 8

Adjust slider to filter visible comments by rank

Display comments: newest first

alee
1 / 5 (1) Mar 21, 2008
The use of high-speed RAMS could revolutionize the computer world.
dfwrunner
5 / 5 (1) Mar 21, 2008
There were 1 nanosecond ECL RAM chips back in the 70's
Z_Man
1 / 5 (1) Mar 22, 2008
wow, I wish i got one of those
Noumenon
1 / 5 (2) Mar 22, 2008
Interesting ,... Does this mean processors will no longer be limited in RAM by the requirement of having to directly address each memory location?
Noumenon
1 / 5 (2) Mar 22, 2008
dfwrunner,.. that may be true, but how much of that RAM could the processors address directly? This new tech seems to indicate that storage media and RAM would in effect become one.
superhuman
5 / 5 (1) Mar 22, 2008
Direct addressing will still be required, the article is only about the implementation and write times of the single memory cell, but they don't say anything about addressing or logical structure of memory banks which will most likely stay the same.
guiding_light
not rated yet Mar 23, 2008
There has been work on using nanocrystals as charge storage elements in flash. I wonder if these are not quantum dots themselves?
talon
1 / 5 (1) Mar 31, 2008
Semiconductor nanocrystals in the sub-10nm size range are often referred to as quantum dots.

More news stories

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FCC to propose pay-for-priority Internet standards

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

SK Hynix posts Q1 surge in net profit

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.