Chemical 'Keypad Lock' for Biomolecular Computers

Mar 19, 2008

Chemists are reporting development of a "keypad lock" for accessing data from biomolecular computers, which promise to be powerful tools in many fields, including medicine and personal security.

Researchers at Clarkson University are reporting an advance toward a new generation of ultra-powerful computers built from DNA and enzymes, rather than transistors, silicon chips, and plastic. Their report on development of a key component for these "biomolecular computers" is scheduled for the March 26 issue of ACS' Journal of the American Chemical Society, a weekly publication.

In the new study, Prof. Evgeny Katz and colleagues describe development of a chemical "keypad lock," one of the first chemical-based security systems of its kind. The researchers note that years of effort have gone into developing biomolecular computers, which rely on chemical reactions rather than silicon chips to perform logic functions. Among their uses would be encryption of financial, military, and other confidential information. Only individuals with access to a secret "key" - a chemical key - could unlock the file and access the data.

The research by Katz and colleagues solved one part of this technological challenge: the security code. They identified a series of naturally occurring chemical reactions that act as a "keypad lock." In laboratory studies, they demonstrated that by adding the correct series of chemicals, the lock could be opened to access the computer. On the other hand, adding the incorrect chemicals to the system acts as a wrong password and prevents access to the computer, they say.

"In addition to the biomolecular security applications, the enzyme-based implication logic networks will be extremely important for making autonomous decisions on the use of specific tools/drugs in various implantable medical systems."

See the full article at:

pubs.acs.org/cgi-bin/abstract.cgi/jacsat/as ap/abs/ja7114713.html

Source: Clarkson University

Explore further: Space-tested fluid flow concept advances infectious disease diagnoses

add to favorites email to friend print save as pdf

Related Stories

Researchers boost silicon-based batteries

Nov 01, 2012

(Phys.org)—Researchers at Rice University have refined silicon-based lithium-ion technology by literally crushing their previous work to make a high-capacity, long-lived and low-cost anode material with ...

Recommended for you

User comments : 0

More news stories

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.