Chemical 'Keypad Lock' for Biomolecular Computers

Mar 19, 2008

Chemists are reporting development of a "keypad lock" for accessing data from biomolecular computers, which promise to be powerful tools in many fields, including medicine and personal security.

Researchers at Clarkson University are reporting an advance toward a new generation of ultra-powerful computers built from DNA and enzymes, rather than transistors, silicon chips, and plastic. Their report on development of a key component for these "biomolecular computers" is scheduled for the March 26 issue of ACS' Journal of the American Chemical Society, a weekly publication.

In the new study, Prof. Evgeny Katz and colleagues describe development of a chemical "keypad lock," one of the first chemical-based security systems of its kind. The researchers note that years of effort have gone into developing biomolecular computers, which rely on chemical reactions rather than silicon chips to perform logic functions. Among their uses would be encryption of financial, military, and other confidential information. Only individuals with access to a secret "key" - a chemical key - could unlock the file and access the data.

The research by Katz and colleagues solved one part of this technological challenge: the security code. They identified a series of naturally occurring chemical reactions that act as a "keypad lock." In laboratory studies, they demonstrated that by adding the correct series of chemicals, the lock could be opened to access the computer. On the other hand, adding the incorrect chemicals to the system acts as a wrong password and prevents access to the computer, they say.

"In addition to the biomolecular security applications, the enzyme-based implication logic networks will be extremely important for making autonomous decisions on the use of specific tools/drugs in various implantable medical systems."

See the full article at:

pubs.acs.org/cgi-bin/abstract.cgi/jacsat/as ap/abs/ja7114713.html

Source: Clarkson University

Explore further: World's fastest manufacture of battery electrodes

add to favorites email to friend print save as pdf

Related Stories

Skin icons can tap into promise of smartwatch

1 hour ago

You have heard it before: smartwatches are cool wearables but critics remind us of the fact that their small size makes many actions cumbersome and they question how many people will really have them on their ...

Samsung phones cleared for US government use

2 hours ago

Samsung Electronics Co. said Tuesday some of its Galaxy mobile devices were approved by the National Security Agency for use with classified U.S. government networks and data, a boost to the company's efforts to expand in ...

Amazon, Simon & Schuster sign book retail deal

4 hours ago

Amazon has reached a deal with American book publisher Simon & Schuster, the companies said, though the e-commerce giant remains at loggerheads with France's Hachette over e-book pricing.

Recommended for you

World's fastest manufacture of battery electrodes

2 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

2 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

3 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

New insights on carbonic acid in water

17 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

User comments : 0