Modeling How Electric Charges Move

Mar 13, 2008

Learning how to control the movement of electrons on the molecular and nanometer scales could help scientists devise small-scale circuits for many applications, including more efficient ways of storing and using solar energy. Marshall Newton, a theoretical chemist at Brookhaven Lab, presents a talk highlighting the theoretical techniques used to understand the factors affecting electron movement at the American Physical Society meeting.

"Electron transfer plays a vital role in numerous biological processes, including nerve cell communication and converting energy from food into useful forms," says Newton. "It's the initial step in photosynthesis, as well, where charges are first separated and the energy is stored for later use - which is one of the concepts behind energy production using solar cells."

Newton described how combining electronic quantum mechanical theory with computational techniques has led to a unified, compact way to understand the nature of charge transfer in complex molecular aggregates.

"In essence," he explains, "the research has led to understanding electronic transport in terms of quantitative answers to a few basic mechanistic questions: namely, how far, how efficiently, and by which route (or molecular 'pathway') a charge moves from a 'donor' to an 'acceptor' in the molecular assembly." The answers come from detailed molecular quantum calculations of the energy gaps separating the relevant electronic states, and the strength of coupling between adjacent molecular units along the "pathways."

"This new approach may yield ways to predict and control electronic transport behavior by 'tuning' the molecular components, resulting in capabilities that can be used to design new solar-based energy schemes," Newton said.

Source: Brookhaven National Laboratory

Explore further: Simultaneous imaging of ferromagnetic and ferroelectric domains

add to favorites email to friend print save as pdf

Related Stories

Organic tin in polymers increases their light absorption

Sep 26, 2014

Researchers of the Christian-Albrechts-University of Kiel (CAU), Germany, successfully integrated organic tin into semiconducting polymers (plastics) for the first time. Semiconducting polymers can be used, ...

Modified algae enzymes enable efficient hydrogen production

Sep 25, 2014

( —Hydrogen as a regenerative fuel produced in gigantic water tanks full of algae, which need nothing more than sunlight to produce the promising green energy carrier: a great idea in theory, but one that fails ...

Team improves solar-cell efficiency

Sep 19, 2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

19 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

23 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

Oct 01, 2014

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0