Modeling How Electric Charges Move

Mar 13, 2008

Learning how to control the movement of electrons on the molecular and nanometer scales could help scientists devise small-scale circuits for many applications, including more efficient ways of storing and using solar energy. Marshall Newton, a theoretical chemist at Brookhaven Lab, presents a talk highlighting the theoretical techniques used to understand the factors affecting electron movement at the American Physical Society meeting.

"Electron transfer plays a vital role in numerous biological processes, including nerve cell communication and converting energy from food into useful forms," says Newton. "It's the initial step in photosynthesis, as well, where charges are first separated and the energy is stored for later use - which is one of the concepts behind energy production using solar cells."

Newton described how combining electronic quantum mechanical theory with computational techniques has led to a unified, compact way to understand the nature of charge transfer in complex molecular aggregates.

"In essence," he explains, "the research has led to understanding electronic transport in terms of quantitative answers to a few basic mechanistic questions: namely, how far, how efficiently, and by which route (or molecular 'pathway') a charge moves from a 'donor' to an 'acceptor' in the molecular assembly." The answers come from detailed molecular quantum calculations of the energy gaps separating the relevant electronic states, and the strength of coupling between adjacent molecular units along the "pathways."

"This new approach may yield ways to predict and control electronic transport behavior by 'tuning' the molecular components, resulting in capabilities that can be used to design new solar-based energy schemes," Newton said.

Source: Brookhaven National Laboratory

Explore further: New multiscale model unifies physical laws of water flow to span all scales

add to favorites email to friend print save as pdf

Related Stories

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Recommended for you

Atom probe assisted dating of oldest piece of earth

3 hours ago

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

Teachers' scare tactics may lead to lower exam scores

As the school year winds down and final exams loom, teachers may want to avoid reminding students of the bad consequences of failing a test because doing so could lead to lower scores, according to new research published ...