Modern physics is critical to global warming research

Mar 11, 2008
More Robust Models of the Big Picture
Even a highly simplified model of the Earth's atmosphere shows great complexity in jet streams and macroturbulence. Mathematical approaches that focus on average statistics rather than detailed patterns can deepen our understanding of climate and climate change. Credit: Brad Marston, Brown University

Science has come a long way with predicting climate. Increasingly sophisticated models and instruments can zero in on a specific storm formation or make detailed weather forecasts – all useful to our daily lives. But to understand global climate change, scientists need more than just a one-day forecast. They need a deeper understanding of the complex and interrelated forces that shape climate.

This is where modern physics can help, argues Brad Marston, professor of physics at Brown University. Marston is working on sets of equations that can be used to more accurately explain climate patterns. Marston will explain his research as part of a panel discussion titled “The Physics of Climate and Climate Change,” today at the American Physical Society’s meeting in New Orleans.

“Climate is a statement about the statistics of weather, not the day-to-day or minute-by-minute fluctuations,” Marston said. “That’s really the driving concept. We know we can’t predict the weather more than a couple of weeks out. But we can turn that to our advantage, by using statistical physics to look directly at the climate itself.”

Take the drying of Lake Mead in the western United States. Scientists think the lake, which straddles Nevada and Arizona, may already be getting less rain due to shifting weather patterns caused by a warming world. Computer models can follow those rainfall patterns and forecast the likely effects on the lake. But current models obscure the larger mechanisms – such as shifting storm tracks – that can drive changes in rainfall.

“If we’re just mesmerized by the details of the model,” Marston said, “we could be missing the big picture of why it’s happening.”

Marston’s statistical approach can be used to help crack the code of complicated, dynamic atmospheric processes poorly understood through models, such as convection, cloud formation, and macroturbulence, which refers to the currents, swirls and eddies in the global atmosphere. More fundamentally, Marston said this approach can help to deepen understanding of what is happening in today’s climate and what those changes can mean for climate in the future.

“We’re trying to make the models more robust, to give better insights into what is actually going on,” he said.

Marston’s research, on which he teamed with former Brown undergraduate Emily Conover and Tapio Schneider of the California Institute of Technology, was selected last fall for publication in the Journal of the Atmospheric Sciences. Marston’s ultimate research goal is to create a more realistic rendering of the global atmospheric system that can be used to understand the atmosphere of the past and to gauge future changes.

“We’re improving the statistical methods themselves, so that they’re more accurate,” Marston said. “At the same time we are applying the methods to progressively more complete models of the Earth’s atmosphere.”

Source: Brown University

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Statistical physics offers a new way to look at climate

Mar 05, 2013

Scientists are using ever more complex models running on ever more powerful computers to simulate the earth's climate. But new research suggests that basic physics could offer a simpler and more meaningful ...

Award-winning A/C uses old idea, new materials

Dec 18, 2012

If thirst is crucial to knowledge, then one crucial step in the evolution of air conditioning was born in the 1970s, when Ron Judkoff was a hot, thirsty Peace Corp volunteer in Kedougou, Senegal, one of the warmest places ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
1 / 5 (1) Mar 12, 2008
Where in this article is anything that implies that "modern physics is critical to global warming research"?!
Doug_Huffman
5 / 5 (1) Mar 12, 2008
They PhysOrg.asm didn't understand the significance of the 'post' in post-modern physics and so edited it out. You know, it's the same thing. MoveOn now, nothing new here.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.